Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidase catalysis via aerobically generated hypervalent iodine intermediates

Abstract

The development of sustainable oxidation chemistry demands strategies to harness O2 as a terminal oxidant. Oxidase catalysis, in which O2 serves as a chemical oxidant without necessitating incorporation of oxygen into reaction products, would allow diverse substrate functionalization chemistry to be coupled to O2 reduction. Direct O2 utilization suffers from intrinsic challenges imposed by the triplet ground state of O2 and the disparate electron inventories of four-electron O2 reduction and two-electron substrate oxidation. Here, we generate hypervalent iodine reagents—a broadly useful class of selective two-electron oxidants—from O2. This is achieved by intercepting reactive intermediates of aldehyde autoxidation to aerobically generate hypervalent iodine reagents for a broad array of substrate oxidation reactions. The use of aryl iodides as mediators of aerobic oxidation underpins an oxidase catalysis platform that couples substrate oxidation directly to O2 reduction. We anticipate that aerobically generated hypervalent iodine reagents will expand the scope of aerobic oxidation chemistry in chemical synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Oxygenase versus oxidase aerobic oxidation chemistry.
Figure 2: Radical-chain mechanism for aldehyde autoxidation.
Figure 3: Aerobic oxidation of PhI provides a broad platform to directly utilize O2 as the terminal oxidant in substrate oxidation reactions.
Figure 4: Aerobic oxidation of aryl iodides is accomplished by intercepting the oxidizing intermediates of aldehyde autoxidation chemistry.

References

  1. Cavani, F. & Teles, J. H. Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2, 508–534 (2009).

    CAS  Google Scholar 

  2. Campbell, A. N. & Stahl, S. S. Overcoming the ‘oxidant problem’: strategies to use O2 as the oxidant in organometallic C–H oxidation reactions catalyzed by Pd (and Cu). Acc. Chem. Res. 45, 851–863 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wertz, S. & Studer, A. Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chem. 15, 3116–3134 (2013).

    CAS  Google Scholar 

  4. Filatov, M., Reckien, W., Peyerimhoff, S. D. & Shaik, S. What are the reasons for the kinetic stability of a mixture of H2 and O2? J. Phys. Chem. A 104, 12014–12020 (2000).

    CAS  Google Scholar 

  5. Borden, W. T., Hoffmann, R., Stuyver, T. & Chen, B. Dioxygen: what makes this triplet diradical kinetically persistent? J. Am. Chem. Soc. 139, 9010–9018 (2017).

    CAS  PubMed  Google Scholar 

  6. Ho, R. Y. N., Liebman, J. F. & Valentine, J. S. in Active Oxygen in Chemistry 1–23 (Blackie Academic and Professional, 1995).

    Google Scholar 

  7. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).

    CAS  PubMed  Google Scholar 

  8. Stahl, S. S. Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew. Chem. Int. Ed. 43, 3400–3420 (2004).

    CAS  Google Scholar 

  9. Wendlandt, A. E. & Stahl, S. S. Quinone-catalyzed selective oxidation of organic molecules. Angew. Chem. Int. Ed. 54, 14638–14658 (2015).

    CAS  Google Scholar 

  10. Piera, J. & Bäckvall, J.-E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer—a biomimetic approach. Angew. Chem. Int. Ed. 47, 3506–3523 (2008).

    CAS  Google Scholar 

  11. Yoshimura, A. & Zhdankin, V. V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev. 116, 3328–3435 (2016).

    CAS  PubMed  Google Scholar 

  12. Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds (Wiley, 2014).

    Google Scholar 

  13. Varvoglis, A. Hypervalent Iodine in Organic Synthesis (Academic, 1997).

    Google Scholar 

  14. Brand, J. P., González, D. F., Nicolai, S. & Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem. Commun. 47, 102–115 (2011).

    CAS  Google Scholar 

  15. Charpentier, J., Früh, N. & Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev. 115, 650–682 (2015).

    CAS  PubMed  Google Scholar 

  16. Banik, S. M., Mennie, K. M. & Jacobsen, E. N. Catalytic 1,3-difunctionalization via oxidative C–C bond activation. J. Am. Chem. Soc. 139, 9152–9155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mu, R. et al. An efficient catalytic aerobic oxidation of alcohols in water using hypervalent iodine(V). Adv. Synth. Catal. 347, 1333–1336 (2005).

    CAS  Google Scholar 

  18. Uyanik, M., Fukatsu, R. & Ishihara, K. Bromine-catalyzed aerobic oxidation of alcohols. Chem. Asian J. 5, 456–460 (2010).

    CAS  PubMed  Google Scholar 

  19. Reich, L. & Stivala, S. S. in Autoxidation of Hydrocarbons and Polyolefins 1–30 (Marcel Dekker, 1969).

    Google Scholar 

  20. Wöhler, F. & Liebig, J. Untersuchungen über das Radikal der Benzoesäure [In German]. Liebigs Ann. 3, 249–282 (1832).

    Google Scholar 

  21. Bäckström, H. L. J. The chain-reaction theory of negative catalysis. J. Am. Chem. Soc. 49, 1460–1472 (1927).

    Google Scholar 

  22. Baeyer, A. & Villiger, V. Benzoylwasserstoffsuperoxyd und die Oxydation des Benzaldehyds an der Luft [In German]. Ber. Dtsch Chem. Ges. 33, 1569–1585 (1900).

    Google Scholar 

  23. Chudasama, V., Fitzmaurice, R. J. & Caddick, S. Hydroacylation of α,β-unsaturated esters via aerobic C–H activation. Nat. Chem. 2, 592–596 (2010).

    CAS  PubMed  Google Scholar 

  24. Chudasama, V., Fitzmaurice, R. J., Ahern, J. M. & Caddick, S. Dioxygen mediated hydroacylation of vinyl sulfonates and sulfones on water. Chem. Commun. 46, 133–135 (2010).

    CAS  Google Scholar 

  25. Chudasama, V., Ahern, J. M., Fitzmaurice, R. J. & Caddick, S. Synthesis of γ-ketophosphonates via aerobic hydroacylation of vinyl phosphonates. Tetrahedron Lett. 52, 1067–1069 (2011).

    CAS  Google Scholar 

  26. Chudasama, V., Akhbar, A. R., Bahou, K. A., Fitzmaurice, R. J. & Caddick, S. Metal-free hydroacylation of C=C and N=N bonds via aerobic C–H activation of aldehydes, and reaction of the products thereof. Org. Biomol. Chem. 11, 7301–7317 (2013).

    CAS  PubMed  Google Scholar 

  27. Paul, S. & Guin, J. Dioxygen-mediated decarbonylative C–H alkylation of heteroaromatic bases with aldehydes. Chem. Eur. J. 21, 17618–17622 (2015).

    CAS  PubMed  Google Scholar 

  28. Yamada, T., Takai, T., Rhode, O. & Mukaiyama, T. Direct epoxidation of olefins catalyzed by nickel(II) complexes with molecular oxygen and aldehydes. Bull. Chem. Soc. Jpn 64, 2109–2117 (1991).

    CAS  Google Scholar 

  29. Kaneda, K. et al. A convenient synthesis of epoxides from olefins using molecular oxygen in the absence of metal catalysts. Tetrahedron Lett. 33, 6827–6830 (1992).

    CAS  Google Scholar 

  30. Mizuno, N., Weiner, H. & Finke, R. G. Co-oxidative epoxidation of cyclohexene with molecular oxygen, isobutyraldehyde reductant, and the polyoxoanion-supported catalyst precursor [(n-C4H9)4N]5Na3[(1,5-COD)Ir·P2W15Nb3O62]. The importance of key control experiments including omitting the catalyst and adding radical-chain initiators. J. Mol. Catal. A 114, 15–28 (1996).

    CAS  Google Scholar 

  31. Nam, W., Kim, H. J., Kim, S. H., Ho, R. Y. N. & Valentine, J. S. Metal complex-catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehydes. A mechanistic study. Inorg. Chem. 35, 1045–1049 (1996).

    CAS  PubMed  Google Scholar 

  32. Das, P., Saha, D., Saha, D. & Guin, J. Aerobic direct C(sp2)–H hydroxylation of 2-arylpyridines by palladium catalysis induced with aldehyde auto-oxidation. ACS Catal. 6, 6050–6054 (2016).

    CAS  Google Scholar 

  33. Larkin, D. R. The role of catalysts in the air oxidation of aliphatic aldehydes. J. Org. Chem. 55, 1563–1568 (1990).

    CAS  Google Scholar 

  34. Lehtinen, C. & Brunow, G. Factors affecting the selectivity of air oxidation of 2-ethyhexanal, an α-branched aliphatic aldehyde. Org. Process Res. Dev. 4, 544–549 (2000).

    CAS  Google Scholar 

  35. Müller, P. & Godoy, J. Ru-catalyzed oxidations with iodosylbenzene derivatives. Substituent effects on selectivity in oxidation of sulfides and alcohols. Helv. Chim. Acta 66, 1790–1795 (1983).

    Google Scholar 

  36. Katritzky, A. R., Gallos, J. K. & Durst, H. D. Structure of and electronic interactions in aromatic polyvalent iodine compounds: a 13C NMR study. Magn. Reson. Chem. 27, 815–822 (1989).

    CAS  Google Scholar 

  37. Koser, G. F., Wettach, R. H., Troup, J. M. & Frenz, B. A. Hypervalent iodine. Crystal structure of phenylhydroxytosyloxyiodine. J. Org. Chem. 41, 3609–3611 (1976).

    CAS  Google Scholar 

  38. Wolf, W., Chalekson, E. & Kobata, D. Structure and proof of structure of benzodiiodoxole. J. Org. Chem. 32, 3239–3241 (1967).

    CAS  Google Scholar 

  39. Macikenas, D., Skrzypczak-Jankun, E. & Protasiewicz, J. D. A new class of iodonium ylides engineered as soluble primary oxo and nitrene sources. J. Am. Chem. Soc. 121, 7164–7165 (1999). .

    CAS  Google Scholar 

  40. Zhong, W., Yang, J., Meng, X. & Li, Z. BF3·OEt2-promoted diastereoselective diacetoxylation of alkenes by PhI(OAc)2 . J. Org. Chem. 76, 9997–10004 (2011).

    CAS  PubMed  Google Scholar 

  41. Yamamoto, Y. & Togo, H. PhI-catalyzed α-tosylation of ketones with m-chloroperbenzoic acid and p-toluenesulfonic acid. Synlett. 798–800 (2006).

  42. Dohi, T. et al. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem. Commun. 46, 7697–7699 (2010).

    CAS  Google Scholar 

  43. Lucchetti, N., Scalone, M., Fantasia, S. & Muñiz, K. An improved catalyst for iodine(I/III)-catalyzed intermolecular C–H amination. Adv. Synth. Catal. 358, 2093–2099 (2016).

    CAS  Google Scholar 

  44. Yablonskii, O. P., Vinogradov, M. G., Kereselidze, R. V. & Nikishin, G. I. Mechanism of the oxidation of aldehydes by oxygen. Bull. Acad. Sci. USSR 18, 272–275 (1969).

    Google Scholar 

  45. Miyamoto, K. et al. Iodoarene-catalyzed oxidative transformations using molecular oxygen. Chem. Commun. 53, 9781–9784 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Texas A&M University and the Welch Foundation (A-1907) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and D.C.P. conceived of the project. A.M. and S.-M.H. carried out the experimental work. A.M., S.-M.H. and D.C.P. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to David C. Powers.

Ethics declarations

Competing interests

A provisional patent has been filed on the aerobic oxidation of aryl iodides.

Supplementary information

Supplementary information

Supplementary information (PDF 2096 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maity, A., Hyun, SM. & Powers, D. Oxidase catalysis via aerobically generated hypervalent iodine intermediates. Nature Chem 10, 200–204 (2018). https://doi.org/10.1038/nchem.2873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing