Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism-based enhancement of scope and enantioselectivity for reactions involving a copper-substituted stereogenic carbon centre

Abstract

A rapidly emerging set of catalytic reactions involves intermediates that contain a copper-substituted stereogenic carbon centre. Here, we demonstrate that an intimate understanding of this distinction provides ways for addressing limitations in reaction scope and explaining why unexpected variations in enantioselectivity often occur. By using catalytic enantioselective Cu–boryl addition to alkenes as the model process, we elucidate several key mechanistic principles. We show that higher electrophile concentration can lead to elevated enantioselectivity. This is because diastereoselective Cu–H elimination may be avoided and/or achiral Cu–boryl intermediates can be converted to allyl–B(pin) rather than add to an alkene. We illustrate that lower alkene amounts and/or higher chiral ligand concentration can minimize the deleterious influence of achiral Cu–alkyl species, resulting in improved enantiomeric ratios. Moreover, and surprisingly, we find that enantioselectivities are higher with the less reactive allylphenyl carbonates as chemoselective copper–hydride elimination is faster with an achiral Cu-alkyl species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key problems and goals of this study.
Figure 2: Labelling studies, the catalytic cycle and temporary loss of the chiral ligand.
Figure 3: Effect of olefin concentration on e.e. and SN2′ selectivity.
Figure 4: Different roles of Cu–H elimination.
Figure 5: Broader scope and generality.

Similar content being viewed by others

References

  1. Lee, Y. & Hoveyda, A. H. Efficient boron–copper additions to aryl-substituted alkenes promoted by NHC-based catalysts. Enantioselective Cu-catalyzed hydroboration reactions. J. Am. Chem. Soc. 131, 3160–3161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jia, T . et al. A Cu/Pd cooperative catalysis for enantioselective allylboration of alkenes. J. Am. Chem. Soc. 137, 13760–13763 (2015).

    CAS  PubMed  Google Scholar 

  3. Lee, Y., Jang, H. & Hoveyda, A. H. Vicinal diboronates in high enantiomeric purity through tandem site-selective NHC-Cu-catalyzed boron-copper additions to terminal alkynes. J. Am. Chem. Soc. 131, 18234–18235 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Meng, F., Jang, H. & Hoveyda, A. H. Exceptionally E- and β-Selective NHC-Cu-catalyzed proto-silyl additions to terminal alkynes and site- and enantioselective proto-boryl additions to the resulting vinylsilanes: synthesis of enantiomerically enriched vicinal and geminal borosilanes. Chem. Eur. J. 19, 3204–3214 (2013).

    CAS  PubMed  Google Scholar 

  5. Nishikawa, D., Hirano, K. & Miura, M. Asymmetric synthesis of α-aminoboronic acid derivatives by copper-catalyzed enantioselective hydroamination. J. Am. Chem. Soc. 137, 15620–15623 (2015).

    CAS  PubMed  Google Scholar 

  6. Noh, D., Chea, H., Ju, J. & Yun, J. Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes. Angew. Chem. Int. Ed. 48, 6062–6064 (2009).

    CAS  Google Scholar 

  7. Matsuda, N., Hirano, K., Satoh, T. & Miura, M. Regioselective and stereospecific copper-catalyzed aminoboration of styrenes with bis(pinacolato)diboron and O-benzoyl-N,N-dialkylhydroxylamines. J. Am. Chem. Soc. 135, 4934–4937 (2013).

    CAS  PubMed  Google Scholar 

  8. Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).

    CAS  PubMed  Google Scholar 

  9. Shi, S. L. & Buchwald, S. L. Copper-catalysed selective hydroamination reactions of alkynes. Nat. Chem. 7, 38–44 (2015).

    CAS  PubMed  Google Scholar 

  10. Logan, K. M. & Brown, M. K. Catalytic enantioselective arylboration of alkenylarenes. Angew. Chem. Int. Ed. 56, 851–855 (2017).

    CAS  Google Scholar 

  11. Gribble, M. W., Pirnot, M. T., Bandar, J. S., Liu, R. Y. & Buchwald, S. L. Asymmetric copper hydride-catalyzed Markovnikov hydrosilylation of vinylarenes and vinyl heterocycles. J. Am. Chem. Soc. 139, 2192–2195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bandar, J. S., Pirnot, M. T. & Buchwald, S. L. Mechanistic studies lead to dramatically improved reaction conditions for the Cu-catalyzed asymmetric hydroamination of olefins. J. Am. Chem. Soc. 137, 14812–14818 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Friis, S. D., Pirnot, M. T. & Buchwald, S. L. Asymmetric hydroarylation of vinylarenes using a synergistic combination of CuH and Pd catalysis. J. Am. Chem. Soc. 138, 8372–8375 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bandar, J. S., Ascic, E. & Buchwald, S. L. Enantioselective CuH-catalyzed reductive coupling of aryl alkenes and activated carboxylic acids. J. Am. Chem. Soc. 138, 5821–5824 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laitar, D. S., Tsui, E. Y. & Sadighi, J. P. Copper(I) β-boroalkyls from alkene insertion: isolation and rearrangement. Organometallics 25, 2405–2408 (2006).

    CAS  Google Scholar 

  16. Wang, Y. -M. & Buchwald, S. L. Enantioselective CuH-catalyzed hydroallylation of vinylarenes. J. Am. Chem. Soc. 138, 5024–5027 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kadyrov, R., Iladinov, I. Z., Almena, J., Monsees, A. & Riermeier, T. H. Chiral diphosphine ligands based on camphor: synthesis and applications in asymmetric hydrogenations. Tetrahedron Lett. 46, 7397–7400 (2005).

    CAS  Google Scholar 

  18. Guzman-Martinez, A. & Hoveyda, A. H. Enantioselective synthesis of allylboronates bearing a tertiary or quaternary B-substituted stereogenic carbon by NHC–Cu-catalyzed substitution reactions. J. Am. Chem. Soc. 132, 10634–10637 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito, H., Ito, S., Sasaki, Y., Matsuura, K. & Sawamura, M. Copper-catalyzed enantioselective substitution of allylic carbonates with diboron: an efficient route to optically active α-chiral allylboronates. J. Am. Chem. Soc. 129, 14856–14857 (2007).

    CAS  PubMed  Google Scholar 

  20. DelPozo, J., Casares, J. A. & Espinet, P. The decisive role of ligand metathesis in Au/Pd bimetallic catalysis. Chem. Commun. 49, 7246–7248 (2013).

    CAS  Google Scholar 

  21. Zhong, C., Kunii, S., Kosaka, Y., Sawamura, M. & Ito, H. Enantioselective synthesis of trans-aryl- and -heteroaryl-substituted cyclopropylboronates by copper(I)-catalyzed reactions of allylic phosphates with a boron derivative. J. Am. Chem. Soc. 132, 11440–11442 (2010).

    CAS  PubMed  Google Scholar 

  22. Bayer, A. & Kazmaier, U. [(p-Cymene)RuCl2]2: an efficient catalyst for highly regioselective allylic alkylations of chelated amino acid ester enolates. Chem. Eur. J. 20, 10484–10491 (2014).

    CAS  PubMed  Google Scholar 

  23. Maity, P., Shacklady-McAtee, D. M., Yap, G. P. A., Sirianni, E. R. & Watson, M. P. Nickel-catalyzed cross couplings of benzylic ammonium salts and boronic acids: stereospecific formation of diarylethanes via C–N bond activation. J. Am. Chem. Soc. 135, 280–285 (2013).

    CAS  PubMed  Google Scholar 

  24. Suess, A. M., Uehling, M. R., Kaminsky, W. & Lalic, G. Mechanism of copper-catalyzed hydroalkylation of alkynes: an unexpected role of dinuclear copper complexes. J. Am. Chem. Soc. 137, 7747–7753 (2015).

    CAS  PubMed  Google Scholar 

  25. Yang, Y., Perry, I. B. & Buchwald, S. L. Copper-catalyzed enantioselective addition of styrene-derived nucleophiles to imines enabled by ligand-controlled chemoselective hydrocupration. J. Am. Chem. Soc. 138, 9787–9790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Whitesides, G. M., Panek, E. J. & Stedronsky, E. R. Radical intermediates in the thermal decomposition of neophyl(tri-n-butylphosphine)copper(I) and neophyl(tri-n-butylphosphine)silver(I). J. Am. Chem. Soc. 94, 232–239 (1972).

    CAS  Google Scholar 

  27. Greiser, T. & Weiss, E. Kristallstruktur des Kupfer(I)-tert-butoxids, [CH3)3COCu]4 . Chem. Ber. 109, 3142–3146 (1976).

    CAS  Google Scholar 

  28. Lemmen, T. H., Goeden, G. V., Huffman, J. C., Geerts, R. L. & Caulton, K. G. Alcohol elimination chemistry of tetrakis(tert-butoxocopper). Inorg. Chem. 29, 3680–3685 (1990).

    CAS  Google Scholar 

  29. Dubinina, G. G., Furutachi, H. & Vicic, D. A. Active trifluoromethylating agents from well-defined copper(I)–CF3 complexes. J. Am. Chem. Soc. 130, 8600–8601 (2008).

    CAS  PubMed  Google Scholar 

  30. Bradley, D. C., Mehrotra, R. C., Rothwell, I. P. & Singh, A. Alkoxo and Aryloxo Metal Derivatives 329–332 (Elsevier, 2001).

    Google Scholar 

  31. Yoshikai, N. & Nakamura, E. Mechanisms of nucleophilic organocopper(I) reactions. Chem. Rev. 112, 2339–2372 (2012).

    CAS  PubMed  Google Scholar 

  32. Konovalov, A. I., Benet-Buchholz, J., Martin, E. & Grushin, V. V. The critical effect of the countercation in the direct cupration of fluoroform with [Cu(OR)2]. Angew. Chem. Int. Ed. 52, 11637–11641 (2013).

    CAS  Google Scholar 

  33. Whitesides, G. M., Stedronsky, E. R., Casey, C. P. & San Filippo, J. Jr Mechanism of thermal decomposition of n-butyl(tri-n-butylphosphine) copper(I). J. Am. Chem. Soc. 92, 1426–1427 (1970).

    CAS  Google Scholar 

  34. Miyashita, A., Yamamoto, T. & Yamamoto, A. Thermal stability of alkylcopper(I) complexes coordinated with tertiary phosphines. Bull. Chem. Soc. Jpn 50, 1109–1117 (1977).

    CAS  Google Scholar 

  35. Van Koten, G. & Noltes, J. G. in Comprehensive Organometallic Chemistry . The Synthesis, Reactions and Structures of Organometallics Compounds Vol. 2 (eds Wilkinbson, G., Stone, F. G.A. & Abel, E. W.) 746 (Pergamon, 1982).

    Google Scholar 

  36. Mazzacano, T. J. & Mankad, N. P. Dehydrogenative borylation and silylation of styrenes catalyzed by copper carbenes. ACS Catal. 7, 146–149 (2017).

    CAS  Google Scholar 

  37. Huang, C. & Liu, B. Asymmetric total synthesis of ent-heliespirones A & C. Chem. Commun. 46, 5280–5282 (2010).

    CAS  Google Scholar 

  38. Bai, W.-J., Green, J. C. & Pettus, T. R. R. Total syntheses of ent-heliespirones A and C. J. Org. Chem. 77, 379–387 (2012).

    CAS  PubMed  Google Scholar 

  39. Gonzalez, A. Z. et al. 9-Borabicyclo[3.3.2]decanes and the asymmetric hydroboration of 1,1-disubstituted alkenes. J. Am. Chem. Soc. 130, 9218–9219 (2008).

    CAS  PubMed  Google Scholar 

  40. Thomas, S. P. & Aggarwal, V. K. Asymmetric hydroboration of 1,1-disubstituted alkenes. Angew. Chem. Int. Ed. 48, 1896–1898 (2009).

    CAS  Google Scholar 

  41. Zhang, L., Zuo, Z., Wan, X. & Huang, Z. Cobalt-catalyzed enantioselective hydroboration of 1,1-disubstituted aryl alkenes. J. Am. Chem. Soc. 136, 15501–15504 (2014).

    CAS  PubMed  Google Scholar 

  42. Mazet, C. & Gérard, D. Highly regio- and enantioselective catalytic asymmetric hydroboration of α-substituted styrenyl derivatives. Chem. Commun. 47, 298–300 (2011).

    CAS  Google Scholar 

  43. Corberán, R., Mszar, N. W. & Hoveyda, A. H. NHC-Cu-catalyzed enantioselective hydroboration of acyclic and exocyclic 1,1-disubstituted aryl alkenes. Angew. Chem. Int. Ed. 50, 7079–7082 (2011).

    Google Scholar 

  44. Alexakis, A., Krause, N. & Woodward, S. in Copper-Catalyzed Asymmetric Synthesis (eds Alexakis, A., Krause, N. & Woodward, S.) 33–68 (VCH–Wiley, 2014).

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Institutes of Health (GM-47480) and the National Science Foundation (CHE-1362763). J.d.P. is an Alfonso Martin Escudero Foundation postdoctoral fellow. The authors thank M. Miura, K. Hirano and D. Nishikawa (University of Osaka) for their assistance in measuring enantioselectivity for the formation of compound 16 and F. Romiti and Y. Shi for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and S.R. identified the optimal catalyst and conditions, developed the catalytic enantioselective transformations and performed the labelling and related experiments. S.T. and J.d.P. designed and performed the computational and spectroscopic studies, respectively, and developed the related mechanistic hypotheses. A.H.H. directed the investigations and composed the manuscript with revisions provided by the other authors.

Corresponding author

Correspondence to Amir H. Hoveyda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 48671 kb)

Supplementary information

Crystallographic data for compound 35 (CIF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Radomkit, S., Torker, S. et al. Mechanism-based enhancement of scope and enantioselectivity for reactions involving a copper-substituted stereogenic carbon centre. Nature Chem 10, 99–108 (2018). https://doi.org/10.1038/nchem.2861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing