Direct mapping of the angle-dependent barrier to reaction for Cl + CHD3 using polarized scattering data


The transition state, which gates and modulates reactive flux, serves as the central concept in our understanding of activated reactions. The barrier height of the transition state can be estimated from the activation energy taken from thermal kinetics data or from the energetic threshold in the measured excitation function (the dependence of reaction cross-sections on initial collision energies). However, another critical and equally important property, the angle-dependent barrier to reaction, has not yet been amenable to experimental determination until now. Here, using the benchmark reaction of Cl + CHD3(v1 = 1) as an example, we show how to map this anisotropic property of the transition state as a function of collision energy from the preferred reactant bond alignment of the backward-scattered products—the imprints of small impact-parameter collisions. The deduced bend potential at the transition state agrees with ab initio calculations. We expect that the method should be applicable to many other direct reactions with a collinear barrier.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic illustration of how the transition-state structure affects chemical reactivity.
Figure 2: Imaging the dynamic outcomes in the reaction of Cl + CHD3(v1 = 1) with two distinct collisional geometries at Ec = 4.8 kcal mol−1.
Figure 3: Collisional energy dependency of the steric preference, defined as the ratio of the aligned to the unpolarized reactivity for end-on () or side-on () attack.
Figure 4: Ec-dependent evolution of differential steric preference in the HCl(v = 0) channel.
Figure 5: Strategy to deduce attack angle ρ at the saddle point from the experimentally controllable alignment angle α.


  1. 1

    Houston, P. L. Chemical Kinetics and Reaction Dynamics (MaGraw-Hill Higher Education, 2001).

  2. 2

    Levine, R. D. Molecular Reaction Dynamics (Cambridge Univ. Press, 2005).

  3. 3

    Guo, H. & Liu, K. Control of chemical reactivity by transition-state and beyond. Chem. Sci. 7, 3992–4003 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Polanyi, J. C. Some concepts in reaction dynamics. Science 236, 680–690 (1987).

    CAS  Article  Google Scholar 

  5. 5

    Crim, F. F. Vibrational state control of bimolecular reactions: discovering and directing chemistry. Acc. Chem. Res. 32, 877–884 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Liu, K. Perspective. Vibrational-induced steric effects in bimolecular reactions. J. Chem. Phys. 142, 080901 (2015).

    Article  Google Scholar 

  8. 8

    Liu, K. Vibrational control of bimolecular reactions with methane by mode, bond, and stereo selectivity. Annu. Rev. Phys. Chem. 67, 91–111 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Loesch, H. J. Orientation and alignment in reactive beam collisions: recent progress. Annu. Rev. Phys. Chem. 46, 555–594 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Neumark, D. M. Spectroscopy of reactive potential energy surface. PhysChemComm. 5, 76–81 (2002).

    Article  Google Scholar 

  11. 11

    Zare, R. N. Optical preparation of aligned reagents. Ber. Bunsenges. Phys. Chem. 86, 422–425 (1982).

    CAS  Article  Google Scholar 

  12. 12

    Friedrich, B. & Herschbach, D. Manipulating molecules via combined static and laser fields. J. Phys. Chem. A 103, 10280–10288 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Bowman, J. M., Czakó, G. & Fu, B. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys. Chem. Chem. Phys. 13, 8094–8111 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Schatz, G. C. Quantum effects in gas phase bimolecular chemical reactions. Annu. Rev. Phys. Chem. 39, 317–340 (1988).

    CAS  Article  Google Scholar 

  15. 15

    Zhou, J., Zhang, B., Lin, J. J. & Liu, K. Imaging the isotope effects in the ground state reaction of Cl + CH4 and CD4 . Mol. Phys. 103, 1757–1763 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Zhang, Z., Zhou, Y., Zhang, D. H., Czakó, G. & Bowman, J. M. Theoretical study of the validity of the Polanyi rules for the late barrier Cl + CHD3 reaction. J. Phys. Chem. Lett. 3, 3416–3419 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Wang, F., Lin, J.-S., Cheng, Y. & Liu, K. Vibrational enhancement factor of the Cl + CHD3(v1 = 1) reaction: rotational probe effects. J. Phys. Chem. Lett. 4, 323–327 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Yan, S., Wu, Y.-T., Zhang, B., Yue, X.-F. & Liu, K. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom? Science 316, 1723–1726 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Yan, S., Wu, Y.-T. & Liu, K. Tracking the energy flow along the reaction path. Proc. Natl Acad. Sci. USA 105, 12667–12672 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Zhang, B. & Liu, K. Imaging a reactive resonance in the Cl + CH4 reaction. J. Chem. Phys. 122, 101102 (2005).

    Article  Google Scholar 

  21. 21

    Martinez, R., Gonzalez, M., Defazio, P. & Petrongolo, C. Searching for resonances in the reaction Cl + CH4 → HCl + CH3: quantum versus quasiclassical dynamics and comparison with experiments. J. Chem. Phys. 127, 104302 (2007).

    Article  Google Scholar 

  22. 22

    Liu, K. Quantum dynamical resonances in chemical reactions: from A + BC to polyatomic systems. Adv. Chem. Phys. 149, 1–46 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Wang, F., Lin, J.-S. & Liu, K. Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom. Science 331, 900–903 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Wang, F., Liu, K. & Rakitzis, T. P. Revealing the stereospecific chemistry of the reaction of Cl with aligned CHD3(v1 = 1). Nat. Chem. 4, 636–641 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Wang, F. & Liu, K. Differential steric effects in Cl reactions with aligned CHD3(v1 = 1) by the R(0) and Q(1) transitions. I Attacking the excited C–H bond. J. Chem. Phys. 145, 144305 (2016).

    Article  Google Scholar 

  26. 26

    Wang, F. & Liu, K. Differential steric effects in Cl reactions with aligned CHD3(v1 = 1) by the R(0) and Q(1) transitions. II Abstracting the unexcited D-atoms. J. Chem. Phys. 145, 144306 (2016).

    Article  Google Scholar 

  27. 27

    Wang, F. & Liu, K. Steric effects in the Cl + CHD3(v1 = 1) reaction. Chin. J. Chem. Phys. 26, 705–709 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Liu, R. et al. Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction. J. Chem. Phys. 141, 074310 (2014).

    Article  Google Scholar 

  29. 29

    Wang, F., Pan, H. & Liu, K. Imaging the effect of reagent rotation on the dynamics of the Cl + CHD3(v1 = 1, |JK〉) reaction. J. Phys. Chem. A 119, 11983–11988 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Aldegunde, J. et al. How reactants polarization can be used to change and unravel chemical reactivity. J. Phys. Chem. A 109, 6200–6217 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Wang, F., Lin, J.-S. & Liu, K. How to measure a complete set of polarization-dependent differential cross sections in a scattering experiment with aligned reagents? J. Chem. Phys. 140, 084202 (2014).

    Article  Google Scholar 

  32. 32

    Schechter, I. & Levine, R. D. Products’ angular distribution for stereoselective reactions. J. Chem. Soc. Faraday Trans. II 85, 1059–1080 (1989).

    CAS  Article  Google Scholar 

  33. 33

    Schechter, I., Prisant, M. G. & Levine, R. D. A classical kinematic model for direct reactions of oriented reagents. J. Phys. Chem. 91, 5472–5480 (1987).

    CAS  Article  Google Scholar 

  34. 34

    Czakó, G. & Bowman, J. M. Accurate ab initio potential energy surface, thermochemistry, and dynamics of of the Cl(2P, 2P3/2) + CH4 → HCl + CH3 and H + CH3Cl reactions. J. Chem. Phys. 136, 044307 (2012).

    Article  Google Scholar 

  35. 35

    Zare, R. N. Angular Momentum (Wiley-Interscience, 1988).

    Google Scholar 

  36. 36

    Lin, J. J., Zhou, J., Shiu, W. & Liu, K. Application of time-sliced ion velocity imaging to crossed molecular beam experiments. Rev. Sci. Instrum. 74, 2495–2500 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Czakó, G. & Bowman, J. M. Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science 334, 343–346 (2011).

    Article  Google Scholar 

Download references


The authors thank J.-S. Lin and O. Tkac for assisting with some imaging acquisitions. This work was supported by Academia Sinica and the Minister of Science and Technology of Taiwan (MOST-105-2113-M-001-019-MY3). F.W. also acknowledges support from the National Nature Science Foundation of China (grants 21322309 and 21673047) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. G.C. thanks the Scientific Research Fund of Hungary (PD-111900) and the Bolyai Research Scholarship for financial support and the National Information Infrastructure Development Institute for computer resources.

Author information




K.L. conceived and designed the experiments. H.P. and F.W. performed the experiments and analysed the data. G.C. performed theoretical calculations. All authors discussed the results and commented on the manuscript. K.L. wrote the paper.

Corresponding authors

Correspondence to Fengyan Wang or Gábor Czakó or Kopin Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 488 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Wang, F., Czakó, G. et al. Direct mapping of the angle-dependent barrier to reaction for Cl + CHD3 using polarized scattering data. Nature Chem 9, 1175–1180 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing