Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

Abstract

Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromophore isomers and protonation states of rsEGFP2.
Figure 2: Femtosecond TA spectroscopy of rsEGFP2 in solution.
Figure 3: Model for the off-to-on photoswitching of rsEGFP2.
Figure 4: rsEGFP2 in the electronically excited S1 state.
Figure 5: Chromophore twisting is accompanied by a downward movement of the central α-helix along the barrel axis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weber, W., Helms, V., McCammon, J. A. & Langhoff, P. W. Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 6177–6182 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maddalo, S. L. & Zimmer, M. The role of the protein matrix in green fluorescent protein fluorescence. Photochem. Photobiol. 82, 367–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Tsien, R. Y. The green fluorescent protein. Ann. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Voityuk, A. A., Michel-Beyerle, M. -E. & Rösch, N. Structure and rotation barriers for ground and excited states of the isolated chromophore of the green fluorescent protein. Chem. Phys. Lett. 296, 269–276 (1998).

    Article  CAS  Google Scholar 

  6. Fang, C., Frontiera, R. R., Tran, R. & Mathies, R. A. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462, 200–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Meech, S. R. Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 38, 2922–2934 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Olsen, S., Lamothe, K. & Martinez, T. J. Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching. J. Am. Chem. Soc. 132, 1192–1193 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Regis Faro, A. et al. Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. J. Am. Chem. Soc. 133, 16362–16365 (2011).

    Article  CAS  Google Scholar 

  10. Warren, M. M. et al. Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat. Commun. 4, 1461 (2013).

    Article  PubMed  Google Scholar 

  11. Adam, V., Berardozzi, R., Byrdin, M. & Bourgeois, D. Phototransformable fluorescent proteins: future challenges. Curr. Opin. Chem. Biol. 20C, 92–102 (2014).

    Article  Google Scholar 

  12. Nienhaus, K. & Nienhaus, G. U. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 43, 1088–1106 (2014).

    CAS  PubMed  Google Scholar 

  13. Andresen, M. et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl Acad. Sci. USA 102, 13070–13074 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Andresen, M. et al. Structural basis for reversible photoswitching in Dronpa. Proc. Natl Acad. Sci. USA 104, 13005–13009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andresen, M. et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26, 1035–1040 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Adam, V. et al. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc. Natl Acad. Sci. USA 105, 18343–18348 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colletier, J. P. et al. Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. J. Phys. Chem. Lett. 7, 882–887 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Grotjohann, T. et al. rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 1, e00248 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yadav, D. et al. Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa. J. Phys. Chem. B 119, 2404–2414 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Barends, T. R. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schiro, G., Woodhouse, J., Weik, M., Schlichting, I. & Shoeman, R. L. Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments. J. Appl. Crystallogr. 50, 932–939 (2017).

    Article  CAS  Google Scholar 

  24. El Khatib, M., Martins, A., Bourgeois, D., Colletier, J. P. & Adam, V. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci. Rep. 6, 18459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terwilliger, T. C. & Berendzen, J. Difference refinement: obtaining differences between two related structures. Acta Crystallogr. D 51, 609–618 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Colletier, J.-P. et al. Use of a ‘caged’ analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography. Acta Crystallogr. D 63, 1115–1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Schafer, L. V., Groenhof, G., Boggio-Pasqua, M., Robb, M. A. & Grubmuller, H. Chromophore protonation state controls photoswitching of the fluoroprotein asFP595. PLoS Comput. Biol. 4, e1000034 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, R. S. Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction. Acc. Chem. Res. 34, 555–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  PubMed  Google Scholar 

  30. Pandelieva, A. T. et al. Brighter red fluorescent proteins by rational design of triple-decker motif. ACS Chem. Biol. 11, 508–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Hutchison, C. D. M. et al. Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein. Chem. Phys. Lett. 654, 63–71 (2016).

    Article  CAS  Google Scholar 

  32. Liang, M. et al. The coherent X-ray imaging instrument at the Linac coherent light source. J. Synchrotron Rad. 22, 514–519 (2015).

    Article  CAS  Google Scholar 

  33. Coquelle, N. et al. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr. D 71, 1184–1196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foucar, L. et al. CASS-CFEL-ASG software suite. Comput. Phys. Commun. 183, 2207–2213 (2012).

    Article  CAS  Google Scholar 

  35. Foucar, L. CFEL-ASG software suite (CASS): usage for free-electron laser experiments with biological focus. J. Appl. Crystallogr. 49, 1336–1346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White, T. A. et al. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D 69, 1231–1240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jonasson, G. et al. Excited state dynamics of the green fluorescent protein on the nanosecond time scale. J. Chem. Theory Comput. 7, 1990–1997 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Case, D. A. et al. AMBER 10 (Univ. of California, 2008).

  39. Ursby, T. & Bourgeois, D. Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Crystallogr. A 53, 564–575 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the CNRS (PEPS SASLELX) to M.W., and an ANR grant to M.W., M.C. and M.Sliwa (ANR-15-CE32-0004 BioXFEL). Use of LCLS, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract no. DE-AC02-76SF00515. We acknowledge support from the Max Planck Society. This work used the Multistep Protein Purification Platform (MP3) of the Grenoble Instruct Center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). The Chevreul Institute (FR 2638), the Ministère de l'Enseignement Supérieur et de la Recherche, the Région Nord-Pas de Calais and FEDER are acknowledged for financial support. G.K. acknowledges support from the European Union under the program FP7-PEOPLE-2011-ITN NanoMem (project number 317079). J.W. acknowledges support from the CEA through the IRTELIS PhD program.

Author information

Authors and Affiliations

Authors

Contributions

M.W., D.B., J.-P.C. and I.S. designed the research. S.J. provided the rsEGFP2 plasmid. J.W., V.A., V.G., M.T. and F.F. expressed and purified the WT protein. V.A. cloned, expressed and purified the protein variant and V.A. and D.B. analysed it. J.W., V.G. and I.S. carried out the microcrystallization. G.S. and M.B. spectroscopically characterized the microcrystals. R.L.S. and G.S. designed and optimized the pre-illumination device. M.Feliks and M.Field carried out the excited-state QM/MM simulations. J.R., M.L. and I.D. carried out the excited-state classical MD simulations. M.S. and C.R. carried out time-resolved absorption spectroscopy. M.C. and G.S. carried out the steady-state absorption spectroscopy with femtosecond excitation. N.C, M.Sliwa, J.W., V.A., A.A., T.R.M.B., S.B., S.C., E.D.l.M., R.B.D., L.F., M.Hilpert, M.S.Hunter, J.E.K., G.K., T.J.L., M.L., K.N., J.S.R., C.M.R., M.Seaberg, M.C., R.L.S., J.P.C., I.S. and M.W. carried out the SFX experiments. R.L.S, R.B.D. and G.K. performed sample injections. J.S.R. and M.C. aligned and controlled the pump laser. A.A., S.B., M.S.Hunter, J.E.K. and M.L. prepared and performed data collection. C.M.R., M.Hilpert, L.F., N.C., T.R.M.B. and J.-P.C. carried out the online SFX data processing. N.C. and J.-P.C. carried out the offline SFX data processing and structure refinement, with input from T.R.M.B., K.N., I.S., D.B. and M.W. J.-P.C., G.S., R.L.S., J.W., M.S., M.C., M.Field, J.R. and B.L. wrote the Supplementary Information with input from M.W., N.C., T.R.M.B., I.S. and D.B. M.W., D.B. and I.S. wrote the manuscript with input from T.R.M.B., M.Field, J.-P.C., M.S. and I.D.

Corresponding authors

Correspondence to Jacques-Philippe Colletier, Ilme Schlichting or Martin Weik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 27913 kb)

Supplementary information

Supplementary Movie (MOV 5602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coquelle, N., Sliwa, M., Woodhouse, J. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chem 10, 31–37 (2018). https://doi.org/10.1038/nchem.2853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing