Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation

Abstract

Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative examples of promising DNA nanostructures for synthetic biology.
Figure 2: DNA/RNA nanotechnology-enabled toolbox for synthetic circuits.
Figure 3: Typical AND gate circuits.
Figure 4: I/O interface scheme for synthetic circuits.
Figure 5: Nucleic acid nanostructures as information storage media.
Figure 6: The scheme of an integrated live-cell circuit enabled by DNA/RNA nanotechnology.

Similar content being viewed by others

References

  1. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Benner, S. A. & Sismour, A. M. Synthetic biology. Nat. Rev. Genet. 6, 533–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A. & Weiss, R. Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 15, 289–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Myhrvold, C. & Silver, P. A. Using synthetic RNAs as scaffolds and regulators. Nat. Struct. Mol. Biol. 22, 8–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ye, D., Zuo, X. & Fan, C. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection. Prog. Chem. 29, 36–46 (2017).

    Google Scholar 

  9. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Fu, Y. M. et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J. Am. Chem. Soc. 135, 696–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Fu, J. L., Liu, M. H., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pal, S. et al. DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 133, 17606–17609 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5, 61–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Z. et al. Nano-caged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 7, 10619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Pei, H. et al. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. Int. Ed. 51, 9020–9024 (2012).

    Article  CAS  Google Scholar 

  17. Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Mao, C. D., LaBean, T. H., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Ge, Z. et al. Hybridization chain reaction amplification of MicroRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 86, 2124–2130 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, M. G., Liang, X. G., Mochizuki, T. & Asanuma, H. A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. Angew. Chem. Int. Ed. 49, 2167–2170 (2010).

    Article  CAS  Google Scholar 

  26. Lohmann, F., Weigandt, J., Valero, J. & Famulok, M. Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle. Angew. Chem. Int. Ed. 53, 10372–10376 (2014).

    Article  CAS  Google Scholar 

  27. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elbaz, J. et al. DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5, 417–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Willner, I., Shlyahovsky, B., Zayats, M. & Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev. 37, 1153–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Groves, B. et al. Computing in mammalian cells with nucleic acid strand exchange. Nat. Nanotechnol. 11, 287–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Genot, A. J., Bath, J. & Turberfield, A. J. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133, 20080–20083 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Li, T., Lohmann, F. & Famulok, M. Interlocked DNA nanostructures controlled by a reversible logic circuit. Nat. Commun. 5, 4940 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. 53, 7745–7750 (2014).

    Article  CAS  Google Scholar 

  38. Liu, X. et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett. 12, 4254–4259 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, J., Fan, C., Pei, H., Shi, J. & Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25, 4386–4396 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Ohta, S., Glancy, D. & Chan, W. C. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351, 841–845 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, C. et al. In vivo cloning of artificial DNA nanostructures. Proc. Natl Acad. Sci. USA 105, 17626–17631 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Myhrvold, C., Dai, M., Silver, P. A. & Yin, P. Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. Nano Lett. 13, 4242–4248 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Geary, C., Rothemund, P. W. K. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Hao, C. H. et al. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat. Commun. 5, 3890 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Grabow, W. W. & Jaeger, L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871–1880 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Elbaz, J., Yin, P. & Voigt, C. A. Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nat. Commun. 7, 11179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA–protein hybrid nanoscale shapes. Science 355, 1283 (2017).

    Article  CAS  Google Scholar 

  52. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cong, L. et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kiani, S. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods 11, 723–726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsai, S. Q. et al. Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paige, J. S., Nguyen-Duc, T., Song, W. & Jaffrey, S. R. Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D. & Arkin, A. P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. USA 108, 8617–8622 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chappell, J., Takahashi, M. K. & Lucks, J. B. Creating small transcription activating RNAs. Nat. Chem. Biol. 11, 214–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B. & Arkin, A. P. Rationally designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol. 8, 447–454 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi, M. K. & Lucks, J. B. A modular strategy for engineering orthogonal chimeric RNA transcription regulators. Nucleic Acids Res. 41, 7577–7588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bayer, T. S. & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nat. Biotechnol. 24, 545–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Callura, J. M., Cantor, C. R. & Collins, J. J. Genetic switchboard for synthetic biology applications. Proc. Natl. Acad. Sci. USA 109, 5850–5855 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280, 1716–1721 (1998).

    Article  CAS  Google Scholar 

  77. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Fujibayashi, K., Zhang, D. Y., Winfree, E. & Murata, S. Error suppression mechanisms for DNA tile self-assembly and their simulation. Nat. Comput. 8, 589–612 (2008).

    Article  Google Scholar 

  79. Schulman, R., Wright, C. & Winfree, E. Increasing redundancy exponentially reduces error rates during algorithmic self-assembly. ACS Nano 9, 5760–5771 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Mayer, C., McInroy, G. R., Murat, P., Van Delft, P. & Balasubramanian, S. An epigenetics-inspired DNA-based data storage system. Angew. Chem. Int. Ed. 55, 11144–11148 (2016).

    Article  CAS  Google Scholar 

  81. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu, G. Z. et al. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc. 135, 16438–16445 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Hu, R. et al. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem. Int. Ed. 53, 5821–5826 (2014).

    Article  CAS  Google Scholar 

  84. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi, H. M. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313-U292 (2014).

    Article  CAS  Google Scholar 

  91. Liu, Y. et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat. Commun. 5, 5393 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Bindewald, E. et al. Multistrand structure prediction of nucleic acid assemblies and design of RNA switches. Nano Lett. 16, 1726–1735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Damle, S. S. & Davidson, E. H. Synthetic in vivo validation of gene network circuitry. Proc. Natl. Acad. Sci. USA 109, 1548–1553 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Auslander, S., Auslander, D., Muller, M., Wieland, M. & Fussenegger, M. Programmable single-cell mammalian biocomputers. Nature 487, 123–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Lipton, R. J. DNA solution of hard computational problems. Science 268, 542–545 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Ouyang, Q., Kaplan, P. D., Liu, S. & Libchaber, A. DNA solution of the maximal clique problem. Science 278, 446–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, Q. et al. DNA computing on surfaces. Nature 403, 175–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Sakamoto, K. et al. Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Chandran, H., Gopalkrishnan, N., Phillips, A. & Reif, J. In 17th Int. Conf. DNA Comput. Molecular Program (eds Cardelli, L. & Shih, W.) 64–83 (Springer, 2011).

    Book  Google Scholar 

  102. Weizmann, Y., Elnathan, R., Lioubashevski, O. & Willner, I. Endonuclease-based logic gates and sensors using magnetic force-amplified readout of DNA scission on cantilevers. J. Am. Chem. Soc. 127, 12666–12672 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Genot, A. J. et al. High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 8, 760–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Song, T. Q., Garg, S., Mokhtar, R., Bui, H. & Reif, J. Analog computation by DNA strand displacement circuits. ACS Synth. Biol. 5, 898–912 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Vinkenborg, J. L., Karnowski, N. & Famulok, M. Aptamers for allosteric regulation. Nat. Chem. Biol. 7, 519–527 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Z. et al. A DNA-origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. Small 6, 1854–1858 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Subramanian, H. K. K., Chakraborty, B., Sha, R. & Seeman, N. C. The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. Nano Lett. 11, 910–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4, 832–839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Edwardson, T. G. W., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, K. R. et al. Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials 34, 5226–5235 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, J., Lee, J., Hamada, S., Murata, S. & Ha Park, S. Self-replication of DNA rings. Nat. Nanotechnol. 10, 528–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Tam, D. Y. & Lo, P. K. Multifunctional DNA nanomaterials for biomedical applications. J. Nanomater. 2015, 765492 (2015).

    Article  CAS  Google Scholar 

  123. Chen, C. H. et al. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316, 597–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Kemmer, C. et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol. 28, 355–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Ren, K. et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Keum, J. W. & Bermudez, H. Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem. Commun., 7036–7038 (2009).

  127. Hamblin, G. D., Carneiro, K. M. M., Fakhoury, J. F., Bujold, K. E. & Sleiman, H. F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J. Am. Chem. Soc. 134, 2888–2891 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Mei, Q. et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 11, 1477–1482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, J. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu, L., Lu, C. H. & Willner, I. Switchable catalytic DNA catenanes. Nano Lett. 15, 2099–2103 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Cassinelli, V. et al. One-step formation of “chain-armor”-stabilized DNA nanostructures. Angew. Chem. Int. Ed. 54, 7795–7798 (2015).

    Article  CAS  Google Scholar 

  133. Brglez, J., Nikolov, P., Angelin, A. & Niemeyer, C. M. Designed intercalators for modification of DNA origami surface properties. Chem. Eur. J. 21, 9440–9446 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Yan, J. et al. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. Angew. Chem. Int. Ed. 54, 2431–2435 (2015).

    Article  CAS  Google Scholar 

  136. Sun, W. J. et al. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 136, 14722–14725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu, C. H. & Willner, I. Stimuli-responsive DNA-functionalized nano-/microcontainers for switchable and controlled release. Angew. Chem. Int. Ed. 54, 12212–12235 (2015).

    Article  CAS  Google Scholar 

  138. Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. 52, 6854–6857 (2013).

    Article  CAS  Google Scholar 

  139. LeProust, E. M. et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 38, 2522–2540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nelissen, F. H. et al. Fast production of homogeneous recombinant RNA--towards large-scale production of RNA. Nucleic Acids Res. 40, e102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ponchon, L. & Dardel, F. Recombinant RNA technology: the tRNA scaffold. Nat. Methods 4, 571–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Suzuki, H., Ando, T., Umekage, S., Tanaka, T. & Kikuchi, Y. Extracellular production of an RNA aptamer by ribonuclease-free marine bacteria harboring engineered plasmids: a proposal for industrial RNA drug production. Appl. Environ. Microbiol. 76, 786–793 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Chan, M. S. & Lo, P. K. Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small 10, 1255–1260 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Patel, P. C., Giljohann, D. A., Seferos, D. S. & Mirkin, C. A. Peptide antisense nanoparticles. Proc. Natl. Acad. Sci. USA 105, 17222–17226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Crawford, R. et al. Non-covalent single transcription factor encapsulation inside a DNA cage. Angew. Chem. Int. Ed. 52, 2284–2288 (2013).

    Article  CAS  Google Scholar 

  150. Nakata, E. et al. Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. Angew. Chem. Int. Ed. 51, 2421–2424 (2012).

    Article  CAS  Google Scholar 

  151. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature 469, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Gantz, V. M. & Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Sun, W. J. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. 54, 12029–12033 (2015).

    Article  CAS  Google Scholar 

  155. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Zheng, J. P. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  CAS  PubMed  Google Scholar 

  165. Stojanovic, M. N. et al. Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc. 127, 6914–6915 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Science and Technology of China (2013CB932803, 2013CB933802, 2016YFA0201200, 2016YFA0400900), the National Science Foundation of China (21390414, 21227804, 21329501, U1532119) and the Chinese Academy of Sciences (QYZDJ-SSW-SLH031, KJCX2-EW-N03) are acknowledged. Hao Yan also acknowledges financial support from the US National Science Foundation, the National Institutes of Health, the Army Research Office, the Office of Naval Research and funds from Arizona State University. A.A.G. acknowledges financial support from the US National Science Foundation, the Gates Foundation, the Arizona Biomedical Research Commission, an Alfred P. Sloan Research Fellowship (FG-2017-9108) and Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander A. Green, Hao Yan or Chunhai Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Green, A., Yan, H. et al. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nature Chem 9, 1056–1067 (2017). https://doi.org/10.1038/nchem.2852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2852

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research