Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate

Abstract

Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal structure of [Cu(acac)2].
Figure 2: Mechanical properties of single crystals of [Cu(acac)2].
Figure 3: Structure changes in [Cu(acac)2] crystals during flexure.

References

  1. 1

    Dove, M. T. Structure and Dynamics: An Atomic View of Materials (Oxford Univ. Press, 2003).

  2. 2

    Chen, W., Qi, D.-C., Huang, H., Gao, X. & Wee, A. T. S. Organic–organic heterojunction interfaces: effect of molecular orientation. Adv. Funct. Mater. 21, 410–424 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Shaw, P. E., Wolfer, P., Langley, B., Burn, P. L. & Meredith, P. Impact of acceptor crystallinity on the photophysics of nonfullerene blends for organic solar cells. J. Phys. Chem. C 118, 13460–13466 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Bronstein, H. et al. Thieno[3,2-b]thiophene−diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272–3275 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Somiya, S. Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties 2nd edn (Academic, 2013).

  9. 9

    Reddy, C. M., Rama Krishna, G. & Ghosh, S. Mechanical properties of molecular crystals-applications to crystal engineering. CrystEngComm 12, 2296–2314 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Reddy, C. M., Padmanabhan, K. A. & Desiraju, G. R. Structure–property correlations in bending and brittle organic crystals. Cryst. Growth Des. 6, 2720–2731 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Panda, M. K. et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat. Chem. 7, 65–72 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Reddy, C. M. et al. Structural basis for bending of organic crystals. Chem. Commun. 3945–3947 (2005).

  13. 13

    Duyker, S. G., Peterson, V. K., Kearley, G. J., Studer, A. J. & Kepert, C. J. Extreme compressibility in LnFe(CN)6 coordination framework materials via molecular gears and torsion springs. Nat. Chem. 8, 270–275 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Goodwin, A. L. et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319, 794–797 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Commins, P., Desta, I. T., Karothu, D. P., Panda, M. K. & Naumov, P. Crystals on the move: mechanical effects in dynamic solids. Chem. Commun. 52, 13941–13954 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Takamizawa, S. & Miyamoto, Y. Superelastic organic crystals. Angew. Chem. Int. Ed. 53, 6970–6973 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Werner, A. Über Acetylacetonverbindungen des Platins. Ber. Deut. Chem. Ges. 34, 2584–2593 (1901).

    Article  Google Scholar 

  18. 18

    Starikova, Z. A. & Shugam, E. A. Crystal chemical data for inner complexes of β-diketones. J. Struct. Chem. 10, 267–269 (1969).

    Article  Google Scholar 

  19. 19

    Lebrun, P. C., Lyon, W. D. & Kuska, H. A. Crystal structure of bis(2,4-pentanedionato)copper(II). J. Crystallogr. Spectrosc. Res. 16, 889–893 (1986).

    CAS  Article  Google Scholar 

  20. 20

    Vreshch, V. D., Yang, J.-H., Zhang, H., Filatov, A. S. & Dikarev, E. V. Monomeric square-planar cobalt(II) acetylacetonate: mystery or mistake? Inorg. Chem. 49, 8430–8434 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Golchoubian, H. Redetermination of crystal structure of bis(2,4-pentanedionato)copper(II). Asian J. Chem. 20, 5834–5838 (2008).

    CAS  Google Scholar 

  22. 22

    Hamid, M., Mazhar, M., Zeller, M. & Hunter, A. D. CCDC 281026. CSD Communication doi: 10.5517/cc9ffch (2005).

  23. 23

    Berry, G., Callon, G., Gowans, B., Low, J. N. & Smith, R. CCDC 228882. CSD Communication doi: 10.5517/cc7p59c (2004).

  24. 24

    Janiak, C. A critical account of ππ stacking in metal complexes with aromatic nitrogen containing ligands. J. Chem. Soc. Dalton Trans. 3885–3896 (2000).

  25. 25

    Hunter, C. A. & Sanders, J. K. M. The nature of ππ interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Heine, K. B. et al. Complexation, computational, magnetic, and structural studies of the Maillard reaction product isomaltol including investigation of an uncommon π interaction with copper(II). Inorg. Chem. 50, 1498–1505 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Tan, J. C. & Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40, 1059–1080 (2010).

    Article  Google Scholar 

  28. 28

    Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Ghosh, S. & Reddy, C. M. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew. Chem. Int. Ed. 51, 10319–10323 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Ghosh, S., Mishra, M. K., Ganguly, S. & Desiraju, G. R. Dual stress and thermally driven mechanical properties of the same organic crystal: 2,6-dichlorobenzylidene-4-fluoro-3-nitroaniline. J. Am. Chem. Soc. 137, 9912–9921 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Ghosh, S., Mishra, M. K., Kadambi, S. B., Ramamurty, U. & Desiraju, G. R. Designing elastic organic crystals: highly flexible polyhalogenated N-benzylideneanilines. Angew. Chem. Int. Ed. 54, 2674–2678 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Holtzclaw, H. F., Johnson, K. W. R. & Hengeveld, F. W. Polarographic reduction of the copper derivatives of several 1,3-diketones in various solvents. J. Am. Chem. Soc. 74, 3776–3778 (1952).

    CAS  Article  Google Scholar 

  33. 33

    TI 950 TriboIndenter User Manual Revision 9.2.1211 (Hysitron Inc., 2011).

  34. 34

    McPhillips, T. M. et al. Blu-Ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Rad. 9, 401–406 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).

    Google Scholar 

  38. 38

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council for support. Part of this research was undertaken on the MX1 and MX2 beamlines of the Australian Synchrotron, Clayton, Victoria, Australia. We thank Australian Synchrotron for travel support and their staff for assistance. We thank the University of Queensland, Queensland University of Technology and the Central Analytical Research Facility (CARF, QUT) for support.

Author information

Affiliations

Authors

Contributions

A.W., M.C.P. and A.G. synthesized the materials investigated. A.G., A.W., M.C.P., J.K.C. and J.C.M. performed the X-ray measurements. A.W., A.G., M.C.P., Y.X., C.Y. and G.E. performed the mechanical measurements. J.K.C. and J.C.M. conceptualized the studies and directed the research. A.W., A.G., M.C.P., J.K.C. and J.C.M. wrote the manuscript.

Corresponding authors

Correspondence to Jack K. Clegg or John C. McMurtrie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4957 kb)

41557_2018_BFnchem2848_MOESM2_ESM.mp4

Supplementary Movie 1 (MP4 35949 kb)

Supplementary information

Supplementary Movie 1 (MP4 35949 kb)

41557_2018_BFnchem2848_MOESM3_ESM.mp4

Supplementary Movie 2 (MP4 6669 kb)

Supplementary information

Supplementary Movie 2 (MP4 6669 kb)

Supplementary information

Crystallographic data for the unbent [Cu(acac)2] (CIF 299 kb)

Supplementary information

Crystallographic data for Crystal 1 (structures a to p) (CIF 355 kb)

Supplementary information

Crystallographic data for Crystal 2 (structures a to r) (CIF 420 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Worthy, A., Grosjean, A., Pfrunder, M. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nature Chem 10, 65–69 (2018). https://doi.org/10.1038/nchem.2848

Download citation

Further reading