Abstract
Naturally occurring peptides and proteins often use dynamic disulfide bonds to impart defined tertiary/quaternary structures for the formation of binding pockets with uniform size and function. Although peptide synthesis and modification are well established, controlling quaternary structure formation remains a significant challenge. Here, we report the facile incorporation of aryl aldehyde and acyl hydrazide functionalities into peptide oligomers via solid-phase copper-catalysed azide–alkyne cycloaddition (SP-CuAAC) click reactions. When mixed, these complementary functional groups rapidly react in aqueous media at neutral pH to form peptide–peptide intermolecular macrocycles with highly tunable ring sizes. Moreover, sequence-specific figure-of-eight, dumbbell-shaped, zipper-like and multi-loop quaternary structures were formed selectively. Controlling the proportions of reacting peptides with mismatched numbers of complementary reactive groups results in the formation of higher-molecular-weight sequence-defined ladder polymers. This also amplified antimicrobial effectiveness in select cases. This strategy represents a general approach to the creation of complex abiotic peptide quaternary structures.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Sequence-selective dynamic covalent assembly of information-bearing oligomers
Nature Communications Open Access 07 February 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Hubscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).
Bader, G. D., Betel, D. & Hogue, C. W. V. BIND: the biomolecular interaction network database. Nucleic Acids Res. 31, 248–250 (2003).
Hobert, O. Gene regulation by transcription factors and microRNAs. Science 319, 1785–1786 (2008).
Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).
Dixon, R. A. Natural products and plant disease resistance. Nature 411, 843–847 (2001).
Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).
Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).
Lasica, A. M. & Jagusztyn-Krynicka, E. K. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol. Rev. 31, 626–636 (2007).
Kivirikko, K. I. & Myllyharju, J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol. 16, 357–368 (1998).
Carlini, A. S., Adamiak, L. & Gianneschi, N. C. Biosynthetic polymers as functional materials. Macromolecules 49, 4379–4394 (2016).
Niu, J., Hili, R. & Liu, D. R. Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nat. Chem. 5, 282–292 (2013).
Rosenbaum, D. M. & Liu, D. R. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J. Am. Chem. Soc. 125, 13924–13925 (2003).
Xi, W. et al. Clickable nucleic acids: sequence-controlled periodic copolymer/oligomer synthesis by orthogonal thiol-X reactions. Angew. Chem. Int. Ed. 54, 14462–14467 (2015).
Porel, M., Thornlow, D. N., Phan, N. N. & Alabi, C. A. Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction. Nat. Chem. 8, 590–596 (2016).
Porel, M. & Alabi, C. A. Sequence-defined polymers via orthogonal allyl acrylamide building blocks. J. Am. Chem. Soc. 136, 13162–13165 (2014).
Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).
Gutekunst, W. R. & Hawker, C. J. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J. Am. Chem. Soc. 137, 8038–8041 (2015).
Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Self-assembling sequence-adaptive peptide nucleic acids. Science 325, 73–77 (2009).
Wei, T., Jung, J. H. & Scott, T. F. Dynamic covalent assembly of peptoid-based ladder oligomers by vernier templating. J. Am. Chem. Soc. 137, 16196–16202 (2015).
Wilson, A., Gasparini, G. & Matile, S. Functional systems with orthogonal dynamic covalent bonds. Chem. Soc. Rev. 43, 1948–1962 (2014).
Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 899–952 (2002).
Sadownik, J. W. & Ulijn, R. V. Dynamic covalent chemistry in aid of peptide self-assembly. Curr. Opin. Biotechnol. 21, 401–411 (2010).
Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006).
Ruff, Y., Garavini, V. & Giuseppone, N. Reversible native chemical ligation: a facile access to dynamic covalent peptides. J. Am. Chem. Soc. 136, 6333–6339 (2014).
Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).
Krishnan-Ghosh, Y. & Balasubramanian, S. Dynamic covalent chemistry on self-templating peptides: formation of a disulfide-linked β-hairpin mimic. Angew. Chem. Int. Ed. 42, 2171–2173 (2003).
Lam, R. T. S. et al. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308, 667–669 (2005).
Haney, C. M., Loch, M. T. & Horne, W. S. Promoting peptide α-helix formation with dynamic covalent oxime side-chain cross-links. Chem. Commun. 47, 10915–10917 (2011).
Haney, C. M. & Horne, W. S. Dynamic covalent side-chain cross-links via intermolecular oxime or hydrazone formation from bifunctional peptides and simple organic linkers. J. Pept. Sci. 20, 108–114 (2014).
Rocard, L., Berezin, A., De Leo, F. & Bonifazi, D. Templated chromophore assembly by dynamic covalent bonds. Angew. Chem. Int. Ed. 54, 15739–15743 (2015).
Fernandez-Lopez, S. et al. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature 412, 452–456 (2001).
Kennedy, A. D. et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc. Natl Acad. Sci. USA 105, 1327–1332 (2008).
Jin, Y., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013).
Ladame, S. Dynamic combinatorial chemistry: on the road to fulfilling the promise. Org. Biomol. Chem. 6, 219–226 (2008).
Lehn, J.-M. & Eliseev, A. V. Dynamic combinatorial chemistry. Science 291, 2331–2332 (2001).
Schagger, H. Tricine-SDS–PAGE. Nat. Protoc. 1, 16–22 (2006).
Heinis, C. Drug discovery: tools and rules for macrocycles. Nat. Chem. Biol. 10, 696–698 (2014).
Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat. Rev. Drug. Discov. 7, 608–624 (2008).
Acknowledgements
Financial support for the presented work was provided by the DARPA Fold-Fx programme (N66001-14-2-4051) and the Welch Regents Chair (F-0046). The authors thank M. Persons of the Proteomics facility at University of Texas (UT) at Austin for aid with MALDI–TOF MS acquisition, S. Sorey of the NMR facility at UT Austin for aid with 2D-DOSY-NMR acquisition and I. Riddington of the Mass Spectrometry facility at UT Austin for aid with HRMS acquisition.
Author information
Authors and Affiliations
Contributions
J.F.R. and E.V.A. devised the conducted experiments. J.F.R. wrote the manuscript, collected the MALDI–TOF MS data, collected NMR data and conducted SDS–PAGE experiments. J.L.D. and M.W. designed and conducted the high-throughput luminescence assay for determination of antibiotic efficiencies. J.F.R., I.V.K., D.V.U. and R.G. contributed to the synthesis and purification of all peptides and small-molecule precursors reported. E.T.H. aided in the training for peptide synthesis and HPLC purification. All authors edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2006 kb)
Rights and permissions
About this article
Cite this article
Reuther, J., Dees, J., Kolesnichenko, I. et al. Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner. Nature Chem 10, 45–50 (2018). https://doi.org/10.1038/nchem.2847
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2847
This article is cited by
-
Synthetically encoded complementary oligomers
Nature Reviews Chemistry (2023)
-
Hydrazone bond-oriented molecularly imprinted nanocomposites for the selective separation of protein via the well-defined recognition sites
Microchimica Acta (2022)
-
Sequence-selective dynamic covalent assembly of information-bearing oligomers
Nature Communications (2020)