Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal

Abstract

The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co6Te8(PnPr3)6][C60]3, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co6Te8(PnPr3)6][C60]3 and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superatomic intercalation.
Figure 2: Crystal structures of the layered material before and after intercalation.
Figure 3: Optical absorption spectra and PDOS of layered material before and after intercalation.
Figure 4: Electrical transport properties of [Co6Te8(PnPr3)6][C60]3[TCNE]x.

Similar content being viewed by others

References

  1. Schafhaeutl, C. Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden. J. Prakt. Chem. 21, 129–157 (1840).

    Article  Google Scholar 

  2. Dresselhaus, M. S. & Dresselhaus, G. Advances in physics intercalation compounds of graphite. Adv. Phys. 51, 1–186 (1981).

    Article  Google Scholar 

  3. Chan, C. K. et al. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7, 490–495 (2007).

    Article  CAS  Google Scholar 

  4. Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  5. Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2 . Nat. Mater. 14, 622–627 (2015).

    Article  CAS  Google Scholar 

  6. Kovtyukhova, N. I. et al. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat. Chem. 6, 957–963 (2014).

    Article  CAS  Google Scholar 

  7. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  8. Fan, X. et al. Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 138, 5143–5149 (2016).

    Article  CAS  Google Scholar 

  9. Li, X. et al. Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2 . Nat. Mater. 13, 586–592 (2014).

    Article  CAS  Google Scholar 

  10. Yamanaka, S., Hotehama, K. & Kawaji, H. Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 392, 580–582 (1998).

    Article  CAS  Google Scholar 

  11. Choi, B. et al. Van der Waals solids from self-assembled nanoscale building blocks. Nano Lett. 16, 1445–1449 (2016).

    Article  CAS  Google Scholar 

  12. Turkiewicz, A. et al. Assembling hierarchical cluster solids with atomic precision. J. Am. Chem. Soc. 136, 15873–15876 (2014).

    Article  CAS  Google Scholar 

  13. Tomalia, D. A. & Khanna, S. N. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem. Rev. 116, 2705–2774 (2016).

    Article  CAS  Google Scholar 

  14. Shores, M. P., Beauvais, L. G. & Long, J. R. Cluster-expanded Prussian blue analogues. J. Am. Chem. Soc. 121, 775–779 (1999).

    Article  CAS  Google Scholar 

  15. Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).

    Article  CAS  Google Scholar 

  16. Roy, X. et al. Nanoscale atoms in solid-state chemistry. Science 341, 157–160 (2013).

    Article  CAS  Google Scholar 

  17. Baudron, S. A. et al. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic−inorganic hybrid compound: electronic instability, molecular motion, and charge localization. J. Am. Chem. Soc. 127, 11785–11797 (2005).

    Article  CAS  Google Scholar 

  18. Lee, C.-H. et al. Ferromagnetic ordering in superatomic solids. J. Am. Chem. Soc. 136, 16926–16931 (2014).

    Article  CAS  Google Scholar 

  19. Yoon, B. et al. Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice. Nat. Mater. 13, 807–811 (2014).

    Article  CAS  Google Scholar 

  20. Ong, W.-L. et al. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. Nat. Mater. 16, 83–88 (2016).

    Article  Google Scholar 

  21. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  22. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  23. O'Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 14, 833–839 (2015).

    Article  CAS  Google Scholar 

  24. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotech. 6, 348–352 (2011).

    Article  CAS  Google Scholar 

  25. Xiao, W., Hu, C. & Ward, M. D. Guest exchange through single crystal–single crystal transformations in a flexible hydrogen-bonded framework. J. Am. Chem. Soc. 136, 14200–14206 (2014).

    Article  CAS  Google Scholar 

  26. Batail, P. Tuning molecular solids. Science 341, 135–136 (2013).

    Article  CAS  Google Scholar 

  27. Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010).

    Article  CAS  Google Scholar 

  28. Bloch, E. D. et al. Metal insertion in a microporous metal–organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010).

    Article  CAS  Google Scholar 

  29. Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    Article  CAS  Google Scholar 

  30. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600–601 (1991).

    Article  CAS  Google Scholar 

  31. Steigerwald, M. L., Siegrist, T. & Stuczynski, S. M. Octatelluridohexakis (triethylphosphine)hexacobalt and a connection between chevrel clusters and the NiAs structure. Inorg. Chem. 30, 2256–2257 (1991).

    Article  CAS  Google Scholar 

  32. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  33. Reed, C. A. & Bolskar, R. D. Discrete fulleride anions and fullerenium cations. Chem. Rev. 100, 1075–1120 (2000).

    Article  CAS  Google Scholar 

  34. Stires, IV, J. C., McLaurin, E. J. & & Kubiak, C. P. Infrared spectroscopic determination of the degree of charge transfer in complexes of TCNE with methyl-substituted benzenes. Chem. Commun. 3532–3534 (2005).

  35. Atallah, T. L., Gustafsson, M. V., Schmidt, E., Frisbie, C. D. & Zhu, X.-Y. Charge saturation and intrinsic doping in electrolyte-gated organic semiconductors. J. Phys. Chem. Lett. 6, 4840–4844 (2015).

    Article  CAS  Google Scholar 

  36. Knupfer, M., Pichler, T., Golden, M. S. & Fink, J. The Physics of Fullerene-Based and Fullerene-Related Materials (ed. Andreoni, W.) 135–173 (Springer, 2000).

    Book  Google Scholar 

  37. Andreoni, W. & Giannozzi, P. The Physics of Fullerene-Based and Fullerene-Related Materials (ed. Andreoni, W.) 291–329 (Springer, 2000).

    Book  Google Scholar 

  38. Jehoulet, C., Obeng, Y. S., Kim, Y. T., Zhou, F. M. & Bard, A. J. Electrochemistry and Langmuir trough studies of C60 and C70 films. J. Am. Chem. Soc. 114, 4237–4247 (1992).

    Article  CAS  Google Scholar 

  39. Connelly, N. G. & Geiger, W. E. Chemical redox potentials for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Hastie for her help in making the figures. Funding for this research was provided by the Center for Precision Assembly of Superstratic and Superatomic Solids, and the National Science Foundation (NSF) Materials Research Science and Engineering Centers (MRSEC) (Award no. DMR-1420634). The spectroscopy for this project was supported by the Air Force Office of Scientific Research (Award no. FA9550-14-1-0381). E.S.O'B., R.K. and J.C. are supported by the MRSEC. G.A.E. acknowledges support by the Semiconductor Research Cooperation–Nanoelectronics Research Initiative Hans J. Coufal Fellowship and the Columbia Optics and Quantum Electronics NSF Integrative Graduate Education and Research Traineeship (DGE-1069240). X-ray diffraction measurements were performed in the Shared Materials Characterization Laboratory at Columbia University. Use of the Shared Materials Characterization Laboratory was made possible by funding from Columbia University. We thank C. Nuckolls, M. Steigerwald, L. Brus and C. Dean for the use of their instruments and for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.S.O'B. synthesized the materials and, together with D.W.P., conducted the SCXRD characterization. M.T.T. and T.L.A. conducted the optical measurements. J.C., A.J.M. and D.R.R. formulated and performed the theoretical calculations. R.L.K., G.A.E. and A.M. fabricated the electrical devices and performed the electrical transport and Seebeck coefficient measurements. M.V.P., N.P. and A.C.C. measured the Raman spectra. E.S.O'B. wrote the manuscript with the help of M.T.T., and J.C., X.R., I.K., A.C.C., A.J.M., D.R.R. and X.Z. edited the manuscript. All the authors discussed the data and commented on the manuscript.

Corresponding author

Correspondence to Xavier Roy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1553 kb)

Supplementary information

Crystallographic data for compound [Co6Te8(PnPr3)6][C60]3[Toluene]6 (CIF 6811 kb)

Supplementary information

Crystallographic data for desolvated compound [Co6Te8(PnPr3)6][C60]3 (CIF 2004 kb)

Supplementary information

Crystallographic data for compound [Co6Te8(PnPr3)6][C60]3[TCNE]2 (CIF 1762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Brien, E., Trinh, M., Kann, R. et al. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal. Nature Chem 9, 1170–1174 (2017). https://doi.org/10.1038/nchem.2844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing