Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster

Abstract

Although the cleavage of C–C bonds in unactivated hydrocarbons by soluble transition-metal complexes remains a challenge, such reactions hold the potential to provide access to previously inconceivable skeletal transformations. For instance, one can imagine the dismantling and reassembly of C–C and C–H bonds commonly observed in surface catalysis, but with the increased control innate to homogeneous catalysis. Here we report a pentanuclear nickel cluster that is unreactive to functional groups, such as alcohols, amines and even water, but selectively cleaves the C=C bonds of simple alkenes, such as ethylene, styrene and isobutylene, at temperatures as low as −30 °C and in near-quantitative yields. The isolation of intermediates in reactions with styrene and isobutylene demonstrates that the five nickel centres cooperatively activate three C–H bonds of the alkene substrate before cleaving the C–C bond in the core of the cluster to give a pentanuclear nickel carbide. The net organic product transformation is the abstraction of a carbon atom from an alkene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooperative carbon-atom abstraction from alkenes by [(iPr3P)Ni]5H6 (1).
Figure 2: ORTEP depiction of the solid-state molecular structure of 2, with 50% probability ellipsoids.
Figure 3: ORTEP depiction of the solid-state molecular structure of 3, with 50% probability ellipsoids.
Figure 4: ORTEP depiction of the solid-state structure of cluster 4, with 50% probability ellipsoids.

Similar content being viewed by others

References

  1. Takemori, T., Inagaki, A. & Suzuki, H. A novel type of carbon–carbon double bond cleavage of 1,1-disubstituted alkenes on a triruthenium polyhydrido cluster. J. Am. Chem. Soc. 123, 1762–1763 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512, 413–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki, H., Takaya, Y., Takemori, T. & Tanaka, M. Selective carbon–carbon bond cleavage of cyclopentadiene on a trinuclear ruthenium pentahydride complex. J. Am. Chem. Soc. 116, 10779–10780 (1994).

    Article  CAS  Google Scholar 

  4. Matsubara, K., Inagaki, A., Tanaka, M. & Suzuki, H. Regioselective C–H bond activation of alkanes by a trinuclear ruthenium trihydride complex having a μ3-sulfido ligand. J. Am. Chem. Soc. 121, 7421–7422 (1999).

    Article  CAS  Google Scholar 

  5. Buchowicz, W. et al. Triple C–H bond activation of a nickel-bound methyl group: synthesis and X-ray structure of a carbide cluster (NiCp)6(μ6-C). Inorg. Chem. 51, 8292–8297 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Chamberlin, R. L., Rosenfeld, D. C., Wolczanski, P. T. & Lobkovsky, E. B. Ethylene and alkyne carbon–carbon bond cleavage across tungsten–tungsten multiple bonds. Organometallics 21, 2724–2735 (2002).

    Article  CAS  Google Scholar 

  7. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2008).

    Article  Google Scholar 

  9. Siaj, M. & McBreen, P. H. Creating, varying, and growing single-site molecular contacts. Science 309, 588–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Vang, R. T. et al. Ethylene dissociation on flat and stepped Ni(111): a combined STM and DFT study. Surf. Sci. 600, 66–77 (2006).

    Article  CAS  Google Scholar 

  11. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    CAS  PubMed  Google Scholar 

  12. Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).

    Article  CAS  Google Scholar 

  13. Rybtchinski, B. & Milstein, D. Metal insertion into C−C bonds in solution. Angew. Chem. Int. Ed. 38, 870–883 (1999).

    Article  Google Scholar 

  14. Eisch, J., Piotrowski, A., Han, K., Krüger, C. & Tsay, Y. Oxidative addition of nickel(0) complexes to carbon−carbon bonds in biphenylene: formation of nickelole and 1,2-dinickelecin intermediates. Organometallics 4, 224–231 (1985).

    Article  CAS  Google Scholar 

  15. Gunay, A. & Jones, W. D. Cleavage of carbon–carbon bonds of diphenylacetylene and its derivatives via photolysis of Pt complexes: tuning the C–C bond formation energy toward selective C–C bond activation. J. Am. Chem. Soc. 129, 8729–8735 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Xi, Z., Sato, K., Gao, Y., Lu, J. & Takahashi, T. Unprecedented double C=C bond cleavage of a cyclopentadienyl ligand. J. Am. Chem. Soc. 125, 9568–9569 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sattler, A. & Parkin, G. Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings. Nature 463, 523–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Ohki, Y. et al. Co6H8(PiPr3)6: a cobalt octahedron with face-capping hydrides. Angew. Chem. 128, 16053–16057 (2016).

    Article  Google Scholar 

  19. Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Camacho-Bunquin, J., Ferguson, M. J. & Stryker, J. M. Hydrocarbon-soluble nanocatalysts with no bulk phase: coplanar, two-coordinate arrays of the base metals. J. Am. Chem. Soc. 135, 5537–5540 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Goodfellow, R. J., Hamon, E. M., Howard, J. A., Spencer, J. L. & Turner, D. G. Cationic platinum hydride clusters: X-ray crystal structures of [Pt4H2(PtBu3)4][BF4]2[HBF4]2 and [Pt4H7(PtBu3)4][BPh4]. J. Chem. Soc. Chem. Commun. 1604–1606 (1984).

  22. Brayshaw, S. K. et al. Holding onto lots of hydrogen: a 12-hydride rhodium cluster that reversibly adds two molecules of H2 . Angew. Chem. Int. Ed. 44, 6875–6878 (2005).

    Article  CAS  Google Scholar 

  23. Brayshaw, S. K. et al. Sequential reduction of high hydride count octahedral rhodium clusters [Rh6(PR3)6H12][BArF4]2: redox-switchable hydrogen storage. J. Am. Chem. Soc. 129, 1793–1804 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Araake, R., Sakadani, K., Tada, M., Sakai, Y. & Ohki, Y. [Fe4] and [Fe6] hydride clusters supported by phosphines: synthesis, characterization, and application in N2 reduction. J. Am. Chem. Soc. 139, 5596–5606 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Tsui, E. Y., Tran, R., Yano, J. & Agapie, T. Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters. Nat. Chem. 5, 293–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Fout, A. R., Zhao, Q., Xiao, D. J. & Betley, T. A. Oxidative atom-transfer to a trimanganese complex to form Mn6 (μ6-E)(E = O, N) clusters featuring interstitial oxide and nitride functionalities. J. Am. Chem. Soc. 133, 16750–16753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, Y. et al. Dinitrogen activation upon reduction of a triiron(II) complex. Angew. Chem. 127, 1519–1523 (2015).

    Article  Google Scholar 

  29. Lee, Y. et al. Reactivity of hydride bridges in high-spin [3M–3(μ-H)] clusters (M = FeII, CoII). J. Am. Chem. Soc. 137, 10610–10617 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Murray, L. J., Weare, W. W., Shearer, J., Mitchell, A. D. & Abboud, K. A. Isolation of a (dinitrogen) tricopper (I) complex. J. Am. Chem. Soc. 136, 13502–13505 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Powers, T. M. & Betley, T. A. Testing the polynuclear hypothesis: multi-electron reduction of small molecules by triiron reaction sites. J. Am. Chem. Soc. 135, 12289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishikawa, Y. et al. Modulation of benzene or naphthalene binding to palladium cluster sites by the backside-ligand effect. Angew. Chem. 127, 2512–2516 (2015).

    Article  Google Scholar 

  33. Beck, R., Shoshani, M. & Johnson, S. A. Catalytic hydrogen/deuterium exchange of unactivated carbon–hydrogen bonds by a pentanuclear electron-deficient nickel hydride cluster. Angew. Chem. 124, 11923–11926 (2012).

    Article  Google Scholar 

  34. Shoshani, M. M. & Johnson, S. A. Facile deep and ultradeep hydrodesulfurization by the [(iPr3P)Ni]5H6 cluster compared to mononuclear Ni sources. Inorg. Chem. 54, 11977–11985 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Ervin, K. M. et al. Bond strengths of ethylene and acetylene. J. Am. Chem. Soc. 112, 5750–5759 (1990).

    Article  CAS  Google Scholar 

  36. Kalyani, D., Deprez, N. R., Desai, L. V. & Sanford, M. S. Oxidative C−H activation/C−C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 127, 7330–7331 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A 212, 17–60 (2001).

    Article  CAS  Google Scholar 

  38. Solymosi, F., Cserényi, J., Szöke, A., Bánsági, T. & Oszko, A. Aromatization of methane over supported and unsupported Mo-based catalysts. J. Catal. 165, 150–161 (1997).

    Article  CAS  Google Scholar 

  39. Oyama, S. Preparation and catalytic properties of transition metal carbides and nitrides. Catal. Today 15, 179–200 (1992).

    Article  CAS  Google Scholar 

  40. Nandula, A., Trinh, Q. T., Saeys, M. & Alexandrova, A. N. Origin of extraordinary stability of square-planar carbon atoms in surface carbides of cobalt and nickel. Angew. Chem. Int. Ed. 54, 5312–5316 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgement is made to the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding. M.M.S. acknowledges the NSERC scholarship support.

Author information

Authors and Affiliations

Authors

Contributions

M.M.S. conducted the experiments and analysed the data. M.M.S. and S.A.J. conceived and designed the project and prepared the manuscript

Corresponding author

Correspondence to Samuel A. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2034 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 3129 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 3070 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoshani, M., Johnson, S. Cooperative carbon-atom abstraction from alkenes in the core of a pentanuclear nickel cluster. Nature Chem 9, 1282–1285 (2017). https://doi.org/10.1038/nchem.2840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing