Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and reactivity of a mononuclear gold(II) complex

Abstract

Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn–Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg ‘relativistic’ triad in the periodic table.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Electronic structure of Au(TPP).
Figure 3: Absorption spectrum of sublimed Au(TPP) in CH2Cl2 at 295 K.
Figure 4: Experimental normalized XANES spectra of [Au(TPP)][PF6] (black), Au(TPP) (red) and Au2Cl2(xantphos) (green).
Figure 5: Molecular structure of the neutral Au(II) complex Au(TPP).
Figure 6: Studies of the reactivity of Au(TPP).

Similar content being viewed by others

References

  1. Fürstner, A. Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chem. Soc. Rev. 38, 3208–3221 (2009).

    PubMed  Google Scholar 

  2. Hashmi, A. S. K. Dual gold catalysis. Acc. Chem. Res. 47, 864–876 (2014).

    CAS  PubMed  Google Scholar 

  3. Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashmi, A. K. S. Homogeneous gold catalysis beyond assumptions and proposals—characterized intermediates. Angew. Chem. Int. Ed. 49, 5232–5241 (2010).

    CAS  Google Scholar 

  5. Liu, L. P. & Hammond, G. B. Recent advances in the isolation and reactivity of organogold complexes. Chem. Soc. Rev. 41, 3129–3139 (2012).

    CAS  PubMed  Google Scholar 

  6. Echavarren, A. M. & Obradors, C. Intriguing mechanistic labyrinths in gold(I) catalysis. Chem. Commun. 50, 16–28 (2014).

    Google Scholar 

  7. Joost, M., Amgoune, A. & Bourissou, D. Reactivity of gold complexes towards elementary organometallic reactions. Angew. Chem. Int. Ed. 54, 15022–15045 (2015).

    CAS  Google Scholar 

  8. Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013).

    CAS  PubMed  Google Scholar 

  9. Winston, M. S., Wolf, W. J. & Toste, F. D. Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl–CF3 reductive elimination. J. Am. Chem. Soc. 136, 7777–7782 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shu, X., Zhang, M., He, Y., Frei, H. & Toste, F. D. Dual visible light photoredox and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136, 5844–5847 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tlahuext-Aca, A., Hopkinson, M. N., Sahooab, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2016).

    CAS  PubMed  Google Scholar 

  12. Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    CAS  PubMed  Google Scholar 

  13. Huang, L., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Photosensitizer-free visible-light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angew. Chem. Int. Ed. 55, 4808–4813 (2016).

    CAS  Google Scholar 

  14. Kim, S., Rojas-Martin, J. & Toste, D. F. Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) cross-coupling. Chem. Sci. 7, 85–88 (2016).

    CAS  PubMed  Google Scholar 

  15. Gimeno, M. C. & Laguna, A. in Comprehensive Coordination Chemistry II Vol. 6 (eds McCleverty, J. A. & Meyer, T. J.) 999–1145 (Elsevier, 2005).

    Google Scholar 

  16. Mohamed, A. A., Abdou, H. E. & Fackler, J. P. Jr. Coordination chemistry of gold(II) with amidinate, thiolate and ylide ligands. Coord. Chem. Rev. 254, 1253–1259 (2010).

    CAS  Google Scholar 

  17. Elder, S. H., Lucier, G. M., Hollander, F. J. & Bartlett, N. Synthesis of Au(II) fluoro complexes and their structural and magnetic properties. J. Am. Chem. Soc. 119, 1020–1026 (1997).

    CAS  Google Scholar 

  18. Blake, A. J. et al. Bis(1,4,7-trithiacyclononane)gold dication: a paramagnetic, mononuclear AuII complex. Angew. Chem. Int. Ed. 29, 197–198 (1990).

    Google Scholar 

  19. Seidel, S. & Seppelt, K. Xenon as a complex ligand: the tetra xenono gold(II) cation in AuXe42+(Sb2F11)2 . Science 290, 117–118 (2000).

    CAS  PubMed  Google Scholar 

  20. Drews, T., Seidel, S. & Seppelt, K. Gold–xenon complexes. Angew. Chem. Int. Ed. 41, 454–456 (2002).

    CAS  Google Scholar 

  21. MacCragh, A. & Koski, W. S. The phthalocyanine of gold. J. Am. Chem. Soc. 87, 2496–2497 (1965).

    CAS  Google Scholar 

  22. Wong, E. W. Y. et al. Gold(II) phthalocyanine revisited: synthesis and spectroscopic properties of gold(III) phthalocyanine and an unprecedented ring-contracted phthalocyanine analogue. Chem. Eur. J. 18, 12404–12410 (2012).

    CAS  PubMed  Google Scholar 

  23. Brun, A. M., Harriman, A., Heitz, V. & Sauvage, J. P. Charge transfer across oblique bisporphyrins: two-center photoactive molecules. J. Am. Chem. Soc. 113, 8657–8663 (1991).

    CAS  Google Scholar 

  24. Fukuzumi, S. et al. Metal-centered photoinduced electron transfer reduction of a gold(III) porphyrin cation linked with a zinc porphyrin to produce a long-lived charge-separated state in nonpolar solvents. J. Am. Chem. Soc. 125, 14984–14985 (2003).

    CAS  PubMed  Google Scholar 

  25. Fortage, J. et al. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin–gold porphyrin dyads. Chem. Eur. J. 14, 3467–3480 (2008).

    CAS  PubMed  Google Scholar 

  26. Kadish, K. M. et al. Evidence that gold(III) porphyrins are not electrochemically inert: facile generation of gold(II) 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin. Chem. Commun. 356–357 (2002).

  27. Ou, Z. et al. Substituent effects on the site of electron transfer during the first reduction for gold(III) porphyrins. Inorg. Chem. 43, 2078–2086 (2004).

    CAS  PubMed  Google Scholar 

  28. Preiß, S., Melomedov, J., Wünsche von Leupoldt, A. & Heinze, K. Gold(III) tetraarylporphyrin amino acid derivatives: ligand or metal centred redox chemistry? Chem. Sci. 7, 596–610 (2016).

    PubMed  Google Scholar 

  29. Che, C.-M. et al. Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epithelioid cancer cells. Chem. Commun. 1718–1719 (2003).

  30. Wang, Y., He, Q. Y., Sun, R. W., Che, C. M. & Chiu, J. F. Gold(III) porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res. 65, 11553–11564 (2005).

    CAS  PubMed  Google Scholar 

  31. Lum, C. T., Sun, R. W.-Y., Zou, T. & Che, C.-M. Gold(III) complexes inhibit growth of cisplatin-resistant ovarian cancer in association with upregulation of proapoptotic PMS2 gene. Chem. Sci. 5, 1579–1584 (2014).

    CAS  Google Scholar 

  32. Hu, D. et al. Anticancer gold(III) porphyrins target mitochondrial chaperone Hsp60. Angew. Chem. Int. Ed. 55, 1387–1391 (2016).

    CAS  Google Scholar 

  33. Manoharan, P. T. & Rogers, M. T. in Electron Spin Resonance of Metal Complexes (ed. Yen, T. F.) 143–173 (Plenum, 1969).

    Google Scholar 

  34. Hazell, A. Structure of (5,10,15,20-tetraphenyl-21H,23H-porphinato)platinum(II), C44H28N4Pt. Acta Cryst. C 40, 751–753 (1984).

    Google Scholar 

  35. Silvers, S. J. & Tulinsky, A. The crystal and molecular structure of triclinic tetraphenylporphyrin. J. Am. Chem. Soc. 89, 3331–3337 (1967).

    CAS  PubMed  Google Scholar 

  36. Scheidt, W. R. et al. Crystal and molecular structure of the silver(II) and zinc(II) derivatives of meso-tetraphenylporphyrin. An exploration of crystal-packing effects on bond distance. Inorg. Chem. 25, 795–799 (1986).

    CAS  Google Scholar 

  37. Plaza, L. A. & Chojnacki, J. Influence of chloroform on crystalline products yielded in reactions of 5,10,15,20-tetraphenylporphyrin with HCl and copper(II) salts. Acta Cryst. C 86, m24–m28 (2012).

    Google Scholar 

  38. Bayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. Gold is smaller than silver. Crystal structures of [bis(trimesitylphosphine)gold(I)] and [bis(trimesitylphosphine)silver(I)] tetrafluoroborate. J. Am. Chem. Soc. 118, 7006–7007 (1996).

    CAS  Google Scholar 

  39. Pearson, R. G. Concerning Jahn–Teller effects. Proc. Natl Acad. Sci. USA 72, 2104–2106 (1975).

    CAS  PubMed  Google Scholar 

  40. Leyva-Pérez, A. & Corma, A. Similarities and differences between the ‘relativistic’ triad gold, platinum, and mercury in catalysis. Angew. Chem. Int. Ed. 51, 614–635 (2012).

    Google Scholar 

  41. Pyykkö, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 37, 1967–1997 (2008).

    PubMed  Google Scholar 

  42. Bojan, R. V. et al. Double Jahn–Teller distortion in AuGe complexes leading to a dual blue–orange emission. ChemPlusChem 81, 176–186 (2016).

    CAS  Google Scholar 

  43. Wang, M. C. et al. Mercury complexes of meso-tetra-(p-cyanophenyl)porphyrin and N-methylporphyrin: meso-tetra(p-cyanophenyl)porphyrinatomercury(II) and chloro(N-methyl-meso-tetraphenylporphyrinato) mercury(II). Inorg. Chem. 40, 6064–6068 (2001).

    CAS  PubMed  Google Scholar 

  44. Antipas, A., Dolphin, D., Gouterman, M. & Johnson, E. C. Porphyrins. 38. Redox potentials, charge transfer transitions, and emission of copper, silver, and gold complexes. J. Am. Chem. Soc. 100, 7705–7709 (1978).

    CAS  Google Scholar 

  45. Koppenol, W. H., Stanbury, D. M. & Bounds, P. L. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic. Biol. Med. 49, 317–322 (2010).

    CAS  PubMed  Google Scholar 

  46. Roşca, D.-A., Wright, J. A., Hughes, D. L. & Bochmann, M. Gold peroxide complexes and the conversion of hydroperoxides into gold hydrides by successive oxygen-transfer reactions. Nat. Commun. 4, 2167 (2013).

    PubMed  Google Scholar 

  47. Dann, T. et al. Electrochemistry of AuII and AuIII pincer complexes: determination of the AuII–AuII bond energy. Chem. Commun. 49, 10169–10171 (2013).

    CAS  Google Scholar 

  48. Neidlinger, A., Kienz, T. & Heinze, K. Spin trapping of carbon-centered ferrocenyl radicals with nitrosobenzene. Organometallics 34, 5310–5320 (2015).

    CAS  Google Scholar 

  49. Núñez-Vergara, L. J. et al. Nitrosobenzene: electrochemical, UV–visible and EPR spectroscopic studies on the nitrosobenzene free radical generation and its interaction with glutathione. Electrochim. Acta 45, 3555–3561 (2000).

    Google Scholar 

  50. Zhu, X.-Q. et al. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile. J. Am. Chem. Soc. 130, 2501–2516 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Parts of this research were conducted using the supercomputer Mogon and advisory services offered by Johannes Gutenberg University Mainz (www.hpc.uni-mainz.de), which is a member of the AHRP and the Gauss Alliance. We thank P. Auerbach and M. Mondeshki for collecting the LIFDI mass spectra and assistance with the paramagnetic NMR spectra and R. Jung-Pothmann for collection of the diffraction data. This work was financially supported by the Deutsche Forschungsgemeinschaft (GSC 266, Materials Science in Mainz, scholarship for S.O.). PETRA III is acknowledged for the provision of beamtime at beamline P64. This article is dedicated to G. Huttner on the occasion of his 80th birthday.

Author information

Authors and Affiliations

Authors

Contributions

S.P. synthesized [Au(TPP)][PF6] and Au(TPP), measured the X-band EPR, NMR, infrared, UV–Vis and mass spectra and studied the reactivity, S.O. made the quantum chemical calculations, C.F. performed the single-crystal XRD analysis, D.H. and H.H.H. measured and interpreted the Q-band EPR spectra, P.M. and M.B. measured and interpreted the X-ray absorption spectra and L.C. measured the magnetic susceptibility data. K.H. conceived and designed the experiments and wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Katja Heinze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2876 kb)

Supplementary information

Crystallographic data for compound Au(TPP) (CIF 294 kb)

Supplementary information

Structure factors file for compound Au(TPP) (FCF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preiß, S., Förster, C., Otto, S. et al. Structure and reactivity of a mononuclear gold(II) complex. Nature Chem 9, 1249–1255 (2017). https://doi.org/10.1038/nchem.2836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing