Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis

Abstract

Bacterial meroterpenoids constitute an important class of natural products with diverse biological properties and therapeutic potential. The biosynthetic logic for their production is unknown and defies explanation via classical biochemical paradigms. A large subgroup of naphthoquinone-based meroterpenoids exhibits a substitution pattern of the polyketide-derived aromatic core that seemingly contradicts the established reactivity pattern of polyketide phenol nucleophiles and terpene diphosphate electrophiles. We report the discovery of a hitherto unprecedented enzyme-promoted α-hydroxyketone rearrangement catalysed by vanadium-dependent haloperoxidases to account for these discrepancies in the merochlorin and napyradiomycin class of meroterpenoid antibiotics, and we demonstrate that the α-hydroxyketone rearrangement is potentially a conserved biosynthetic reaction in this molecular class. The biosynthetic α-hydroxyketone rearrangement was applied in a concise total synthesis of naphthomevalin, a prominent member of the napyradiomycin meroterpenes, and sheds further light on the mechanism of this unifying enzymatic transformation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Bacterial THN-derived meroterpenes.
Figure 2: Mcl24-mediated reaction of pre-merochlorin (9).
Figure 3: Chemical chlorination of pre-merochlorin (9) or analogue 17.
Figure 4: Biomimetic total synthesis of (±)-naphthomevalin (1) via a thermal α-hydroxyketone rearrangement.
Figure 5: Theoretical and experimental studies on the thermally induced α-hydroxyketone rearrangement.
Figure 6: NapT8-, NapH3- and NapH1-coupled assays with synthetic 34.

References

  1. Kaysser, L. et al. Merochlorins A–D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J. Am. Chem. Soc. 134, 11988–11991 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Wu, Z. et al. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar. Drugs 11, 2113–2125 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Cheng, Y.-B., Jensen, P. R. & Fenical, W. Cytotoxic and antimicrobial napyradiomycins from two marine-derived Streptomyces strains. Eur. J. Org. Chem. 2013, 3751–3757 (2013).

    CAS  Article  Google Scholar 

  4. Shiomi, K. et al. Novel antibiotics napyradiomycins. Production, isolation, physico-chemical properties and biological activity. J. Antibiot. 39, 487–493 (1986).

    CAS  Article  Google Scholar 

  5. Haste, N. M. et al. Bactericidal kinetics of marine-derived napyradiomycins against contemporary methicillin-resistant Staphylococcus aureus. Mar. Drugs 9, 680–689 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Soria-Mercado, I. E., Prieto-Davó, A., Jensen, P. R. & Fenical, W. Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J. Nat. Prod. 68, 904–910 (2005).

    CAS  PubMed  Article  Google Scholar 

  7. Farnaes, L. et al. Napyradiomycin derivatives, produced by a marine-derived actinomycete, illustrate cytotoxicity by induction of apoptosis. J. Nat. Prod. 77, 15–21 (2014).

    CAS  PubMed  Article  Google Scholar 

  8. Shin-ya, K. et al. Isolation and structural elucidation of an antioxidative agent, naphterpin. J. Antibiot. 43, 444–447 (1990).

    CAS  Article  Google Scholar 

  9. Izumikawa, M., Nagai, A., Hashimoto, J., Takagi, M. & Shin-ya, K. Isolation of 2 new naphthablin analogs, JBIR-79 and JBIR-80, from Streptomyces sp. RI24. J. Antibiot. 63, 729–731 (2010).

    CAS  Article  Google Scholar 

  10. Heide, L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr. Opin. Chem. Biol. 13, 171–179 (2009).

    CAS  PubMed  Article  Google Scholar 

  11. Tello, M., Kuzuyama, T., Heide, L., Noel, J. P. & Richard, S. B. The ABBA family of aromatic prenyltransferases: broadening natural product diversity. Cell. Mol. Life Sci. 65, 1459–1463 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Bach, T. J. & Rohmer, M. Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches (Springer, 2012).

    Google Scholar 

  13. Matsuda, Y. & Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 33, 26–53 (2015).

    Article  Google Scholar 

  14. Xu, Z., Baunach, M., Ding, L. & Hertweck, C. Bacterial synthesis of diverse indole terpene alkaloids by an unparalleled cyclization sequence. Angew. Chem. Int. Ed. 51, 10293–10297 (2012).

    CAS  Article  Google Scholar 

  15. Yamada, Y. et al. Terpene synthases are widely distributed in bacteria. Proc. Natl Acad. Sci. USA 112, 857–862 (2015).

    CAS  PubMed  Article  Google Scholar 

  16. Baunach, M., Franke, J. & Hertweck, C. Terpenoid biosynthesis off the beaten track: unconventional cyclases and their impact on biomimetic synthesis. Angew. Chem. Int. Ed. 54, 2604–2626 (2014).

    Article  CAS  Google Scholar 

  17. Henkel, T. & Zeeck, A. Secondary metabolites by chemical screening, 15. Structure and absolute configuration of naphthomevalin, a new dihydro-naphthoquinone antibiotic from Streptomyces sp. J. Antibiot. 44, 665–669 (1991).

    CAS  Article  Google Scholar 

  18. Shiomi, K. et al. New antibiotic napyradiomycins A2 and B4 and stereochemistry of napyradiomycins. J. Antibiot. 40, 1213–1219 (1987).

    CAS  Article  Google Scholar 

  19. Shiomi, K. et al. Structures of new antibiotics: napyradiomycins. J. Antibiot. 39, 494–501 (1986).

    CAS  Article  Google Scholar 

  20. Kalaitzis, J. A., Hamano, Y., Nilsen, G. & Moore, B. S. Biosynthesis and structural revision of neomarinone. Org. Lett. 5, 4449–4452 (2003).

    CAS  PubMed  Article  Google Scholar 

  21. Shin-ya, K., Furihata, K., Hayakawa, Y. & Seto, H. Biosynthetic studies of naphterpin, a terpenoid metabolite of Streptomyces. Tetrahedron Lett. 31, 6025–6026 (1990).

    CAS  Article  Google Scholar 

  22. Pepper, H. & George, J. The biosynthesis and biomimetic synthesis of merochlorins A and B. Synlett 26, 2485–2490 (2015).

    CAS  Article  Google Scholar 

  23. Funayama, S., Ishibashi, M., Komiyama, K. & Omura, S. Biosynthesis of furaquinocins A and B. J. Org. Chem. 55, 1132–1133 (2002).

    Article  Google Scholar 

  24. Funa, N. et al. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899 (1999).

    CAS  PubMed  Article  Google Scholar 

  25. Kuzuyama, T., Noel, J. P. & Richard, S. B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435, 983–987 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Kumano, T., Tomita, T., Nishiyama, M. & Kuzuyama, T. Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products. J. Biol. Chem. 285, 39663–39671 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Leipoldt, F. et al. Diversity of ABBA prenyltransferases in marine Streptomyces sp. CNQ-509: promiscuous enzymes for the biosynthesis of mixed terpenoid compounds. PLoS ONE 10, e0143237 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Sydor, P. K. et al. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes. Nat. Chem. 3, 388–392 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Li, S. et al. Hapalindole/ambiguine biogenesis is mediated by a Cope rearrangement, C–C bond-forming cascade. J. Am. Chem. Soc. 137, 15366–15369 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Teufel, R. et al. One-pot enzymatic synthesis of merochlorin A and B. Angew. Chem. Int. Ed. 53, 11019–11022 (2014).

    CAS  Article  Google Scholar 

  31. Diethelm, S., Teufel, R., Kaysser, L. & Moore, B. S. A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins. Angew. Chem. Int. Ed. 53, 11023–11026 (2014).

    CAS  Article  Google Scholar 

  32. Pepper, H. P. & George, J. H. Biomimetic total synthesis of (±)-merochlorin A. Angew. Chem. Int. Ed. 52, 12170–12173 (2013).

    CAS  Article  Google Scholar 

  33. Meier, R., Strych, S. & Trauner, D. Biomimetic synthesis of (±)-merochlorin B. Org. Lett. 16, 2634–2637 (2014).

    CAS  PubMed  Article  Google Scholar 

  34. Katsuyama, Y., Harmrolfs, K., Pistorius, D., Li, Y. & Müller, R. A semipinacol rearrangement directed by an enzymatic system featuring dual-function FAD-dependent monooxygenase. Angew. Chem. Int. Ed. 51, 9437–9440 (2012).

    CAS  Article  Google Scholar 

  35. Tatsuta, K., Tanaka, Y., Kojima, M. & Ikegami, H. The first total synthesis of (±)-napyradiomycin A1. Chem. Lett. 14–14 (2002).

  36. Snyder, S. A., Tang, Z.-Y. & Gupta, R. Enantioselective total synthesis of (–)-napyradiomycin A1 via asymmetric chlorination of an isolated olefin. J. Am. Chem. Soc. 131, 5744–5745 (2009).

    CAS  PubMed  Article  Google Scholar 

  37. Takemura, S. et al. A concise total synthesis of (±)-A80915G, a member of the napyradiomycin family of antibiotics. Tetrahedron Lett. 40, 7501–7505 (1999).

    CAS  Article  Google Scholar 

  38. Beekman, A. M., Castillo Martinez, E. & Barrow, R. A. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F. Org. Biomol. Chem. 11, 1109–1115 (2013).

    CAS  PubMed  Article  Google Scholar 

  39. Kimura, M., Fukasaka, M. & Tamaru, Y. Palladium-catalyzed, triethylborane-promoted C-allylation of naphthols and benzene polyols by direct use of allyl alcohols. Synthesis 2006, 3611–3616 (2006).

    Article  CAS  Google Scholar 

  40. Roche, S. P. & Porco, J. A. Jr . Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    CAS  Article  Google Scholar 

  41. Essa, A. H. et al. Reduction of 2,2,2-trichloro-1-arylethanones by RMgX: mechanistic investigation and the synthesis of substituted α,α-dichloroketones. Chem. Commun. 49, 2756–2758 (2013).

    CAS  Article  Google Scholar 

  42. Narayan, S. et al. ‘On water’: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).

    CAS  Article  Google Scholar 

  43. Katsuyama, Y., Li, X.-W., Müller, R. & Nay, B. Chemically unprecedented biocatalytic (AuaG) retro-[2,3]-Wittig rearrangement: a new insight into aurachin B biosynthesis. Chembiochem 15, 2349–2352 (2014).

    CAS  PubMed  Article  Google Scholar 

  44. Winter, J. M. et al. Molecular basis for chloronium-mediated meroterpene cyclization: cloning, sequencing, and heterologous expression of the napyradiomycin biosynthetic gene cluster. J. Biol. Chem. 282, 16362–16368 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. Bernhardt, P., Okino, T., Winter, J. M., Miyanaga, A. & Moore, B. S. A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J. Am. Chem. Soc. 133, 4268–4270 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Winter, J. M. & Moore, B. S. Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J. Biol. Chem. 284, 18577–18581 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Soedjak, H. S., Walker, J. V. & Butler, A. Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Biochemistry 34, 12689–12696 (1995).

    CAS  PubMed  Article  Google Scholar 

  49. de Boer, E. & Wever, R. The reaction mechanism of the novel vanadium-bromoperoxidase. A steady-state kinetic analysis. J. Biol. Chem. 263, 12326–12332 (1988).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to our University of California San Diego colleagues B. Duggan for assistance with NMR measurements and X. Tang for helpful discussions. We are also grateful to M. Ghadiri and L. J. Leman at The Scripps Research Institute for their help in the collection of CD measurements. S.D. acknowledges the Swiss National Science Foundation for a postdoctoral fellowship. This research was supported by the US National Institutes of Health (R01-AI047818) and the Australian Research Council (DP160103393), and was undertaken with the assistance of resources from the National Computational Infrastructure, which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Contributions

Z.D.M., S.D., H.P.P., J.H.G. and B.S.M. designed the study and wrote the manuscript with input from all of the authors. Z.D.M., S.D. and H.P.P. performed the experiments. D.M.H. performed the computational studies.

Corresponding authors

Correspondence to Jonathan H. George or Bradley S. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11063 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miles, Z., Diethelm, S., Pepper, H. et al. A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis. Nature Chem 9, 1235–1242 (2017). https://doi.org/10.1038/nchem.2829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2829

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing