Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays


Two-dimensional (2D) supramolecular arrays provide a route to the spatial control of the chemical functionality of a surface, but their deposition is in almost all cases limited to a monolayer termination. Here we investigated the sequential deposition of one 2D array on another to form a supramolecular heterostructure and realize the growth—normal to the underlying substrate—of distinct ordered layers, each of which is stabilized by in-plane hydrogen bonding. For heterostructures formed by depositing terephthalic acid or trimesic acid on cyanuric acid/melamine, we have determined, using atomic force microscopy under ambient conditions, a clear epitaxial arrangement despite the intrinsically distinct symmetries and/or lattice constants of each layer. Structures calculated using classical molecular dynamics are in excellent agreement with the orientation, registry and dimensions of the epitaxial layers. Calculations confirm that van der Waals interactions provide the dominant contribution to the adsorption energy and registry of the layers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Adsorption of CAM on hBN.
Figure 2: Heterostructures of CAM and TMA.
Figure 3: Energetics of the CAM/TMA heterostructure.
Figure 4: TPA/CAM supramolecular heterostructure.
Figure 5: Energetics of the CAM/TPA heterostructure.


  1. 1

    Elemans, J. A. A. W., Lei, S. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7333 (2009).

    CAS  Google Scholar 

  2. 2

    Macleod, J. M. & Rosei, F. Molecular self-assembly on graphene. Small 10, 1038–1049 (2014).

    CAS  PubMed  Google Scholar 

  3. 3

    Slater (née Phillips), A. G., Beton, P. H. & Champness, N. R. Two-dimensional supramolecular chemistry on surfaces. Chem. Sci. 2, 1440–1448 (2011).

    Google Scholar 

  4. 4

    Wang, D., Wan, L.-J. & Bai, C.-L. Formation and structural transition of molecular self-assembly on solid surface investigated by scanning tunneling microscopy. Mater. Sci. Eng. Rep. 70, 169–187 (2010).

    Google Scholar 

  5. 5

    Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    CAS  PubMed  Google Scholar 

  6. 6

    Baris, B. et al. Robust and open tailored supramolecular networks controlled by the template effect of a silicon surface. Angew. Chem. Int. Ed. 50, 4094–4098 (2011).

    CAS  Google Scholar 

  7. 7

    Barth, J. V. et al. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 39, 1230–1234 (2000).

    CAS  Google Scholar 

  8. 8

    Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    CAS  PubMed  Google Scholar 

  9. 9

    Maier, S. et al. Nanoscale engineering of molecular porphyrin wires on insulating surfaces. Small 4, 1115–1118 (2008).

    CAS  PubMed  Google Scholar 

  10. 10

    Burke, S., Mativetsky, J., Hoffmann, R. & Grütter, P. Nucleation and submonolayer growth of C60 on KBr. Phys. Rev. Lett. 94, 096102 (2005).

    CAS  PubMed  Google Scholar 

  11. 11

    Rahe, P. et al. Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks. Adv. Mater. 25, 3948–3956 (2013).

    CAS  PubMed  Google Scholar 

  12. 12

    Li, B. et al. Self-assembled air-stable supramolecular porous networks on graphene. ACS Nano 7, 10764–10772 (2013).

    CAS  PubMed  Google Scholar 

  13. 13

    Korolkov, V. V. et al. Bimolecular porous supramolecular networks deposited from solution on layered materials: graphite, boron nitride and molybdenum disulphide. Chem. Commun. 50, 8882–8885 (2014).

    CAS  Google Scholar 

  14. 14

    Korolkov, V. V. et al. Van der Waals-induced chromatic shifts in hydrogen-bonded two-dimensional porphyrin arrays on boron nitride. ACS Nano 9, 10347–10355 (2015).

    CAS  PubMed  Google Scholar 

  15. 15

    Ludwig, C., Gompf, B., Petersen, J., Strohmaier, R. & Eisenmenger, W. STM investigations of PTCDA and PTCDI on graphite and MoS2. A systematic study of epitaxy and STM image contrast. Z. Phys. B 93, 365–373 (1994).

    CAS  Google Scholar 

  16. 16

    Blunt, M. O. et al. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 3, 74–78 (2011).

    CAS  PubMed  Google Scholar 

  17. 17

    Ciesielski, A. et al. Self-templating 2D supramolecular networks: a new avenue to reach control over a bilayer formation. Nanoscale 3, 4125 (2011).

    CAS  PubMed  Google Scholar 

  18. 18

    Xu, B., Tao, C., Cullen, W. G., Reutt-Robey, J. E. & Williams, E. D. Chiral symmetry breaking in two-dimensional C60–ACA intermixed systems. Nano Lett. 5, 2207–2211 (2005).

    CAS  PubMed  Google Scholar 

  19. 19

    Wei, Y. & Reutt-Robey, J. E. Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template. J. Am. Chem. Soc. 133, 15232–15235 (2011).

    CAS  PubMed  Google Scholar 

  20. 20

    Skomski, D. & Tait, S. L. Interfacial organic layers for chemical stability and crystalline ordering of thiophene and carboxyl films on a metal surface. J. Phys. Chem. C 118, 1594–1601 (2014).

    CAS  Google Scholar 

  21. 21

    Chen, W. et al. Orientationally ordered C60 on p-sexiphenyl nanostripes on Ag(111). ACS Nano 2, 693–698 (2008).

    CAS  PubMed  Google Scholar 

  22. 22

    Huang, H. et al. Molecular orientation of CuPc thin films on C60/Ag(111). Appl. Phys. Lett. 94, 163303–163304 (2009).

    Google Scholar 

  23. 23

    Yoshimoto, S., Sawaguchi, T., Su, W., Jiang, J. & Kobayashi, N. Superstructure formation and rearrangement in the adlayer of a rare-earth-metal triple-decker sandwich complex at the electrochemical interface. Angew. Chem. Int. Ed. 46, 1071–1074 (2007).

    CAS  Google Scholar 

  24. 24

    Yoshimoto, S. et al. Controlled molecular orientation in an adlayer of a supramolecular assembly consisting of an open-cage C60 derivative and ZnII octaethylporphyrin on Au(111). Angew. Chem. Int. Ed. 43, 3044–3047 (2004).

    CAS  Google Scholar 

  25. 25

    Hinderhofer, A. & Schreiber, F. Organic–organic heterostructures: concepts and applications. ChemPhysChem 13, 628–643 (2012).

    CAS  PubMed  Google Scholar 

  26. 26

    Forker, R. et al. Electronic decoupling of aromatic molecules from a metal by an atomically thin organic spacer. Adv. Mater. 20, 4450–4454 (2008).

    CAS  Google Scholar 

  27. 27

    Gruenewald, M. et al. Commensurism at electronically weakly interacting phthalocyanine/PTCDA heterointerfaces. Phys. Rev. B 91, 155432 (2015).

    Google Scholar 

  28. 28

    Chen, W., Qi, D. C., Huang, H., Gao, X. & Wee, A. T. S. Organic–organic heterojunction interfaces: effect of molecular orientation. Adv. Funct. Mater. 21, 410–424 (2011).

    CAS  Google Scholar 

  29. 29

    Schmitz-Hübsch, T. et al. Direct observation of organic–organic heteroepitaxy: perylenetetracarboxylic-dianhydride on hexa-peri-benzocoronene on highly ordered pyrolytic graphite. Surf. Sci. 445, 358–367 (2000).

    Google Scholar 

  30. 30

    Schwarze, M. et al. Band structure engineering in organic semiconductors. Science 352, 1446–1449 (2016).

    CAS  PubMed  Google Scholar 

  31. 31

    Orton, J. & Foxon, T. Molecular Beam Epitaxy: A Short History (Oxford Univ. Press, 2015).

    Google Scholar 

  32. 32

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  PubMed  Google Scholar 

  33. 33

    Perdigão, L. M. A., Champness, N. R. & Beton, P. H. Surface self-assembly of the cyanuric acid–melamine hydrogen bonded network. Chem. Commun. 28, 538–540 (2006).

    Google Scholar 

  34. 34

    Zhang, X., Chen, T., Chen, Q., Wang, L. & Wan, L.-J. Self-assembly and aggregation of melamine and melamine–uric/cyanuric acid investigated by STM and AFM on solid surfaces. Phys. Chem. Chem. Phys. 11, 7708–7712 (2009).

    CAS  PubMed  Google Scholar 

  35. 35

    Staniec, P. A., Perdigão, L. M. A., Rogers, B. L., Champness, N. R. & Beton, P. H. Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(111). J. Phys. Chem. C 111, 886–893 (2007).

    CAS  Google Scholar 

  36. 36

    Xu, W. et al. Cyanuric acid and melamine on Au(111): structure and energetics of hydrogen-bonded networks. Small 3, 854–858 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Ranganathan, A., Pedireddi, V. R. & Rao, C. N. R. Hydrothermal synthesis of organic channel structures: 1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J. Am. Chem. Soc. 121, 1752–1753 (1999).

    CAS  Google Scholar 

  38. 38

    Griessl, S., Lackinger, M., Edelwirth, M., Hietschold, M. & Heckl, W. M. Self-assembled two-dimensional molecular host–guest architectures from trimesic acid. Single Mol. 3, 25–31 (2002).

    CAS  Google Scholar 

  39. 39

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  40. 40

    Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    CAS  PubMed  Google Scholar 

  41. 41

    Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS All-Atom Force Field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Google Scholar 

  42. 42

    Kannappan, K., Werblowsky, T. L., Rim, K. T., Berne, B. J. & Flynn, G. W. An experimental and theoretical study of the formation of nanostructures of self-assembled cyanuric acid through hydrogen bond networks on graphite. J. Phys. Chem. B 111, 6634–6642 (2007).

    CAS  PubMed  Google Scholar 

  43. 43

    Conti, S. & Cecchini, M. Accurate and efficient calculation of the desorption energy of small molecules from graphene. J. Phys. Chem. C 119, 1867–1879 (2015).

    CAS  Google Scholar 

  44. 44

    Hutter, J., Iannuzzi, M., Schiffmann, F. & Van de Vondele, J. Cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Google Scholar 

  45. 45

    Lee, J. H. A study on a boron-nitride nanotube as a gigahertz oscillator. J. Korean Phys. Soc. 49, 172–176 (2006).

    CAS  Google Scholar 

  46. 46

    Clair, S. et al. STM study of terephthalic acid self-assembly on Au(111): hydrogen-bonded sheets on an inhomogeneous substrate. J. Phys. Chem. B 108, 14585–14590 (2004).

    CAS  Google Scholar 

  47. 47

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  PubMed  Google Scholar 

Download references


We are grateful to the Leverhulme Trust for providing financial support under grant RPG-2016-104 and to the Engineering and Physical Sciences Research Council for support through grant EP/N033906/1. E.B. gratefully acknowledges the receipt of a European Research Council Consolidator Grant; M.B. and E.B. acknowledge the University of Nottingham and Midplus High Performance Computing facilities for providing computational time. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, and the Japan Society for the Promotion of Science KAKENHI Grant Numbers JP26248061, JP15K21722 and JP25106006.

Author information




V.V.K. and P.H.B. conceived and designed the experiments, which were carried out by V.V.K. The hBN crystals were grown by K.W. and T.T. The numerical calculations were conceived through a discussion between M.B., E.B., P.H.B. and V.V.K., and were carried out by M.B. with additional input from E.B. The paper was written by P.H.B., V.V.K., M.B. and E.B. with revisions and comments from all of the authors.

Corresponding authors

Correspondence to Elena Besley or Peter H. Beton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7654 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korolkov, V., Baldoni, M., Watanabe, K. et al. Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays. Nature Chem 9, 1191–1197 (2017).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing