Gallium-rich Pd–Ga phases as supported liquid metal catalysts


A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Section of the Ga-Pd phase diagram.
Figure 2: SEM images of Ga- and Pd/Ga-decorated porous glass.
Figure 3: XPS and AR-XPS of Pd/Ga-SCALMS materials.
Figure 4: Ab initio molecular dynamic simulation of a Pd/Ga slab as a model for SCALMS.
Figure 5: Catalytic performance of Pd/Ga SCALMS for BDH.


  1. 1

    Acres, G. J. K., Bond, G. C., Cooper, B. J. & Dawson, J. A. Use of supported solutions of rhodium trichloride for homogeneous catalysis. J. Catal. 6, 139–141 (1966).

    CAS  Article  Google Scholar 

  2. 2

    Arhancet, J. P., Davis, M. E., Merola, J. S. & Hanson, B. E. Hydroformylation by supported aqueous-phase catalysis: a new class of heterogeneous catalysts. Nature 339, 454–455 (1989).

    CAS  Article  Google Scholar 

  3. 3

    Zhao, F., Fujita, S. & Arai, M. Developments and applications of supported liquid phase. Curr. Org. Chem. 10, 1681–1695 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Mehnert, C. P., Cook, R. A., Dispenziere, N. C. & Afeworki, M. Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J. Am. Chem. Soc. 124, 12932–12933 (2003).

    Article  Google Scholar 

  5. 5

    Jakuttis, M. et al. Rhodium-phosphite SILP catalysis for the highly selective hydroformylation of mixed C4 feedstocks. Ang. Chem. Int. Ed. 50, 4492–4495 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Riisager, A., Jørgensen, B., Wasserscheid, P. & Fehrmann, R. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation. Chem. Commun. 9, 994–996 (2006).

    Article  Google Scholar 

  7. 7

    Ruta, M., Yuranov, I., Dyson, P. J., Laurenczy, G. & Kiwi-Minsker, L. Structured fiber supports for ionic liquid-phase catalysis used in gas-phase continuous hydrogenation. J. Catal. 247, 269–276 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Schneider, M. J., Lijewski, M., Wölfel, R., Haumann, M. & Wasserscheid, P. Continuous gas-phase hydroaminomethylation using supported ionic liquid phase catalysts. Ang. Chem. Int. Ed. 52, 6996–6999 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Steinrück, H.-P. & Wasserscheid, P. Ionic liquids in catalysis. Cat. Lett. 145, 380–397 (2015).

    Article  Google Scholar 

  10. 10

    Abai, M. et al. An ionic liquid process for mercury removal from natural gas. Dalton Trans. 44, 8617–8624 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Earle, M. J. et al. The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Maton, C., de Vos, N. & Stevens, C. V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 42, 5963–5977 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    CAS  Article  Google Scholar 

  14. 14

    Furukawa, S. & Komatsu, T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 7, 735–765 (2017).

    CAS  Article  Google Scholar 

  15. 15

    Yatsenko, P. S., Sabirzyanov, N. A. & Yatsenko, A. S. Dissolution rates and solubility of some metals in liquid gallium and aluminum. J. Physic Conf. Ser. 98, 1–7 (2008).

    Google Scholar 

  16. 16

    Föttinger, K. & Rupprechter, G. In situ spectroscopy of complex surface reactions on supported Pd–Zn, Pd–Ga, and Pd(Pt)–Cu nanoparticles. Acc. Chem. Res. 47, 3071–33079 (2014).

    Article  Google Scholar 

  17. 17

    Armbrüster, M. et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry. ChemCatChem 4, 1048–1063 (2012).

    Article  Google Scholar 

  18. 18

    Prinz, J. et al. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: the road to selective hydrogenation. J. Am. Chem. Soc. 136, 11792–11798 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Lorenz, H. et al. Methanol steam reforming: CO2-selective Pd2Ga phases supported on α- and γ-Ga2O3 . Appl. Cat. A 453, 34–44 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Okamoto, H. Ga–Pd (gallium–palladium). J. Phase Equilib. Diffus. 29, 466–467 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Carrá, S. & Forni, L. Catalytic dehydrogenation of C4 hydrocarbons over chromia-alumina. Cat. Rev. 5, 159–198 (1972).

    Article  Google Scholar 

  22. 22

    Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Sattler, J. J. H. B. et al. Operando UV-Vis spectroscopy of a catalytic solid in a pilot-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst. Chem. Comm. 49, 1518–1520 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Vu, B. K. et al. Electronic density enrichment of Pt catalysts by coke in the propane dehydrogenation. Korean J. Chem. Eng. 28, 383–387 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Lorberth, J. et al. Synthesis of gallane-amine adducts as potential precursors for GaAs and (AlGa) as MOVPE processes and the crystal structure of the {gallane·1,3-bis(dimethylamino)propane} adduct H3Ga·N(CH3)2(CH2)3N(CH3)2 . Adv. Mater. 4, 576–579 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Greenwood, N. N., Storr, A. & Wallbridge, M. G. H. Trimethylamine adducts of gallane and trideuteriogallane. Inorg. Chem. 2, 1036–1039 (1963).

    CAS  Article  Google Scholar 

  27. 27

    Naidich, J. V. & Chuvashov, J. N. Wettability and contact interaction of gallium-containing melts with non-metallic solids. J. Mat. Sci. 18, 2071–2080 (1983).

    CAS  Article  Google Scholar 

  28. 28

    Hardy, S. C. The surface tension of liquid gallium. J. Cryst. Growth 71, 602–606 (1985).

    CAS  Article  Google Scholar 

  29. 29

    Doudrick, K. et al. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30, 6867–6877 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Armbrüster, M., Schlögl, R. & Grin, Y. Intermetallic compounds in heterogeneous catalysis—a quickly developing field. Sci. Technol. Adv. Mater. 15, 034803 (2014).

    Article  Google Scholar 

  31. 31

    Niedermaier, I., Kolbeck, C., Steinrück, H. P. & Maier, F. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces. Rev. Sci. Instrum. 87, 045105 (2016).

    Article  Google Scholar 

  32. 32

    Rodriguez, L. et al. Dehydrogenation of n-butane over Pd–Ga/Al2O3 catalysts. Appl. Cat. A 373, 66–70 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Penner, S. et al. Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects. Appl. Cat. A 358, 193–202 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Haghofer, A. et al. In situ study of the formation and stability of supported Pd2Ga methanol steam reforming catalysts. J. Catal. 286, 13–21 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Braunagel, N. A. & Melas, A. Gallium hydride/trialkylamine adducts, and their use in deposition of IIIV compound films. European patent EP0251555A1 (1988).

  36. 36

    Bove, L. E. et al. Vibrational dynamics of liquid gallium at 320 and 970 K. Phys. Rev. B 71, 014207 (2005).

    Article  Google Scholar 

Download references


The Cluster of Excellence-Engineering of Advanced Material is acknowledged for financial support.

Author information




N.T, J.D. and P.W. conceived and designed the experiments. N.T. synthesized the catalytic materials and J.D. performed the catalytic testing. M.D. and W.P. contributed the electron microscopic analysis, M.B. and R.H. the XRD characterization and M.G., C.P., F.M., H.-P.S. the XPS characterization of the materials and the XPS measurements of the model system. J.E., C.N. and A.G. performed the molecular dynamic simulations. All the authors discussed the results and co-wrote the paper.

Corresponding author

Correspondence to P. Wasserscheid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1892 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taccardi, N., Grabau, M., Debuschewitz, J. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nature Chem 9, 862–867 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing