Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Infrared spectrum and structure of the homochiral serine octamer–dichloride complex

Abstract

The amino acid serine is known to form a very stable octamer that has properties that set it apart from serine complexes of different sizes or from complexes composed of other amino acids. For example, both singly protonated serine octamers and anionic octamers complexed with two halogen ions strongly prefer homochirality, even when assembled from racemic D,L mixtures. Consequently, the structures of these complexes are of great interest, but no acceptable candidates have so far been identified. Here, we investigate anionic serine octamers coordinated with two chloride ions using a novel technique coupling ion mobility spectrometry–mass spectrometry with infrared spectroscopy, in combination with theoretical calculations. The results allow the identification of a unique structure for (Ser8Cl2)2− that is highly symmetric, very stable and homochiral and whose calculated properties match those observed in experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IMS-MS of serine cluster anions.
Figure 2: Size- and conformer-selected infrared spectra of serine cluster–dichloride complexes.
Figure 3: Theoretical structure of the homochiral serine octamer–dichloride complex.

Similar content being viewed by others

References

  1. Echt, O., Sattler, K. & Recknagel, E. Magic numbers for sphere packings—experimental verification in free xenon clusters. Phys. Rev. Lett. 47, 1121–1124 (1981).

    CAS  Google Scholar 

  2. Kroto, H. W., Heath, J. R., O'Brian, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  3. Guo, B. C., Wei, S., Purnell, J., Buzza, S. & Castleman, A. W. Metallo-carbohedrenes [M8C12+ (M = V, Zr, Hf, and Ti)]—a class of stable molecular cluster ions. Science 256, 515–516 (1992).

    CAS  PubMed  Google Scholar 

  4. Li, J., Li, X., Zhai, H. J. & Wang, L. S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).

    CAS  PubMed  Google Scholar 

  5. Gruene, P. et al. Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321, 674–676 (2008).

    CAS  PubMed  Google Scholar 

  6. Miyazaki, M., Fujii, A., Ebata, T. & Mikami, N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004).

    CAS  PubMed  Google Scholar 

  7. Shin, J. W. et al. Infrared signature of structures associated with the H+(H2O)n (n = 6 to 27) clusters. Science 304, 1137–1140 (2004).

    CAS  PubMed  Google Scholar 

  8. Cooks, R. G., Zhang, D., Koch, K. J., Gozzo, F. C. & Eberlin, M. N. Chiroselective self-directed octamerization of serine: implications for homochirogenesis. Anal. Chem. 73, 3646–3655 (2001).

    CAS  PubMed  Google Scholar 

  9. Nemes, P., Schlosser, G. & Vékey, K. Amino acid cluster formation studied by electrospray ionization mass spectrometry. J. Mass Spectrom. 40, 43–49 (2005).

    CAS  PubMed  Google Scholar 

  10. Kellermeier, M. et al. Amino acids form prenucleation clusters: ESI-MS as a fast detection method in comparison to analytical ultracentrifugation. Faraday Discuss. 159, 23–45 (2012).

    CAS  Google Scholar 

  11. Feketeová, L. et al. Fragmentation of the tryptophan cluster [Trp9–2H]2− induced by different activation methods. Rapid Commun. Mass Spectrom. 24, 3255–3260 (2010).

    PubMed  Google Scholar 

  12. Counterman, A. E. & Clemmer, D. E. Anhydrous polyproline helices and globules. J. Phys. Chem. B 108, 4885–4898 (2004).

    CAS  Google Scholar 

  13. Julian, R. R., Hodyss, R. & Beauchamp, J. L. Salt bridge stabilization of charged zwitterionic arginine aggregates in the gas phase. J. Am. Chem. Soc. 123, 3577–3583 (2001).

    CAS  PubMed  Google Scholar 

  14. Do, T. D. et al. Amino acid metaclusters: implications of growth trends on peptide self-assembly and structure. Anal. Chem. 88, 868–876 (2016).

    CAS  PubMed  Google Scholar 

  15. Nanita, S. C., Takats, Z., Cooks, R. G., Myung, S. & Clemmer, D. E. Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions. J. Am. Soc. Mass Spectrom. 15, 1360–1365 (2004).

    CAS  PubMed  Google Scholar 

  16. Nanita, S. C. & Cooks, R. G. Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew. Chem. Int. Ed. 45, 554–569 (2006).

    CAS  Google Scholar 

  17. Koch, K. J., Gozzo, F. C., Zhang, D., Eberlin, M. N. & Cooks, R. G. Serine octamer metaclusters: formation, structure elucidation and implications for homochiral polymerization. Chem. Commun. 1854–1855 (2001).

  18. Nanita, S. C. & Cooks, R. G. Negatively-charged halide adducts of homochiral serine octamers. J. Phys. Chem. B 109, 4748–4753 (2005).

    CAS  PubMed  Google Scholar 

  19. Schalley, C. A. & Weis, P. Unusually stable magic number clusters of serine with a surprising preference for homochirality. Int. J. Mass Spectrom. 221, 9–19 (2002).

    CAS  Google Scholar 

  20. Julian, R. R., Hodyss, R., Kinnear, B., Jarrold, M. F. & Beauchamp, J. L. Nanocrystalline aggregation of serine detected by electrospray ionization mass spectrometry: origin of the stable homochiral gas-phase serine octamer. J. Phys. Chem. B 106, 1219–1228 (2002).

    CAS  Google Scholar 

  21. Counterman, A. E. & Clemmer, D. E. Magic number clusters of serine in the gas phase. J. Phys. Chem. B 105, 8092–8096 (2001).

    CAS  Google Scholar 

  22. Clemmer, D. E. & Jarrold, M. F. Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997).

    CAS  Google Scholar 

  23. Wyttenbach, T. & Bowers, M. T. Gas-phase conformations: the ion mobility/ion chromatography method. Mod. Mass Spectrom. 225, 207–232 (2003).

    CAS  Google Scholar 

  24. Kanu, A. B. et al. Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008).

    CAS  PubMed  Google Scholar 

  25. Warnke, S. et al. Protomers of benzocaine solvent and permittivity dependence. J. Am. Chem. Soc. 137, 4236–4242 (2015).

    CAS  PubMed  Google Scholar 

  26. Masson, A. et al. Infrared spectroscopy of mobility-selected H+-Gly-Pro-Gly-Gly (GPGG). J. Am. Soc. Mass Spectrom. 26, 1444–1454 (2015).

    CAS  PubMed  Google Scholar 

  27. Seo, J. et al. The impact of environment and resonance effects on the site of protonation of aminobenzoic acid derivatives. Phys. Chem. Chem. Phys. 18, 25474–25482 (2016).

    CAS  PubMed  Google Scholar 

  28. Voronina, L. et al. Conformations of prolyl–peptide bonds in the bradykinin 1–5 fragment in solution and in the gas phase. J. Am. Chem. Soc. 138, 9224–9233 (2016).

    CAS  PubMed  Google Scholar 

  29. Seo, J. et al. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat. Chem. 9, 39–44 (2017).

    CAS  PubMed  Google Scholar 

  30. Kong, X. et al. Progressive stabilization of zwitterionic structures in [H(Ser)2–8]+ studied by infrared photodissociation spectroscopy. Angew. Chem. Int. Ed. 45, 4130–4134 (2006).

    CAS  Google Scholar 

  31. Kong, X. et al. Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy. ChemPhysChem 10, 2603–2606 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sunahori, F. X., Yang, G., Kitova, E. N., Klassen, J. S. & Xu, Y. Chirality recognition of the protonated serine dimer and octamer by infrared multiphoton dissociation spectroscopy. Phys. Chem. Chem. Phys. 15, 1873–1886 (2013).

    CAS  PubMed  Google Scholar 

  33. Takats, Z., Nanita, S. C., Schlosser, G., Vekey, K. & Cooks, R. G. Atmospheric pressure gas-phase H/D exchange of serine octamers. Anal. Chem. 75, 6147–6154 (2003).

    CAS  PubMed  Google Scholar 

  34. Linder, R., Seefeld, K., Vavra, A. & Kleinermanns, K. Gas phase infrared spectra of nonaromatic amino acids. Chem. Phys. Lett. 453, 1–6 (2008).

    CAS  Google Scholar 

  35. Antony, J., von Helden, G., Meijer, G. & Schmidt, B. Anharmonic midinfrared vibrational spectra of benzoic acid monomer and dimer. J. Chem. Phys. 123, 014305 (2005).

    PubMed  Google Scholar 

  36. Kapota, C., Lemaire, J., Maitre, P. & Ohanessian, G. Vibrational signature of charge solvation vs salt bridge isomers of sodiated amino acids in the gas phase. J. Am. Chem. Soc. 126, 1836–1842 (2004).

    CAS  PubMed  Google Scholar 

  37. Oomens, J., Steill, J. D. & Redlich, B. Gas-phase IR spectroscopy of deprotonated amino acids. J. Am. Chem. Soc. 131, 4310–4319 (2009).

    CAS  PubMed  Google Scholar 

  38. Blom, M. N. et al. Stepwise solvation of an amino acid: the appearance of zwitterionic structures. J. Phys. Chem. A 111, 7309–7316 (2007).

    CAS  PubMed  Google Scholar 

  39. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  40. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Google Scholar 

  41. Vandenbussche, S., Vandenbussche, G., Reisse, J. & Bartik, K. Do serine octamers exist in solution? relevance of this question in the context of the origin of homochirality on earth. Eur. J. Org. Chem. 2006, 3069–3073 (2006).

    Google Scholar 

  42. Kemper, P. R., Dupuis, N. F. & Bowers, M. T. A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287, 46–57 (2009).

    CAS  Google Scholar 

  43. Warnke, S., Baldauf, C., Bowers, M. T., Pagel, K. & von Helden, G. Photodissociation of conformer-selected ubiquitin ions reveals site-specific cis/trans isomerization of proline peptide bonds. J. Am. Chem. Soc. 136, 10308–10314 (2014).

    CAS  PubMed  Google Scholar 

  44. Warnke, S., von Helden, G. & Pagel, K. Analyzing the higher order structure of proteins with conformer-selective ultraviolet photodissociation. Proteomics 15, 2804–2812 (2015).

    CAS  PubMed  Google Scholar 

  45. Mason, E. A. & McDaniel, E. W. Transport Properties of Ions in Gases (Wiley, 2005).

    Google Scholar 

  46. Schöllkopf, W. et al. in Advances in X-Ray Free-Electron Lasers Instrumentation III Vol. 9512 (ed. Biedron, S. G.) (SPIE, 2015).

    Google Scholar 

  47. MacroModel (Schrödinger, 2016); https://www.schrodinger.com/macromodel.

  48. Gaussian 09, Revision D.01 (Gaussian, 2009); http://gaussian.com/glossary/g09/.

  49. Kesharwani, M. K., Brauer, B. & Martin, J. M. L. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J. Phys. Chem. A 119, 1701–1714 (2015).

    CAS  PubMed  Google Scholar 

  50. Mesleh, M. F., Hunter, J. M., Shvartsburg, A. A., Schatz, G. C. & Jarrold, M. F. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the expert assistance of the FHI free electron laser facility staff, in particular S. Gewinner and W. Schöllkopf. M.T.B. acknowledges the Alexander von Humboldt Foundation and the National Science Foundation (USA) for support under grants CHE-1301032 and CHE-1565941.

Author information

Authors and Affiliations

Authors

Contributions

J.S., S.W., K.P., M.T.B. and G.v.H. conceived and designed the experiments. J.S. and S.W. performed the experiments. J.S. analysed the data and suggested the structure of the serine octamer with two chlorides. All authors co-wrote the paper.

Corresponding authors

Correspondence to Jongcheol Seo or Gert von Helden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Warnke, S., Pagel, K. et al. Infrared spectrum and structure of the homochiral serine octamer–dichloride complex. Nature Chem 9, 1263–1268 (2017). https://doi.org/10.1038/nchem.2821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing