UV-light-driven prebiotic synthesis of iron–sulfur clusters


Iron–sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron–sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron–sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe–2S] and [4Fe–4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron–sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron–sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron–sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron–sulfur-cluster-dependent metabolism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light-driven, prebiotic synthesis of iron–sulfur peptides.
Figure 2: UV-light desulfurization of the cysteine of glutathione to an alanine.
Figure 3: Prebiotic pathways for the synthesis of iron–sulfur clusters.
Figure 4: [2Fe–2S] cluster formation in situ within fatty-acid vesicles.


  1. 1

    Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).

    CAS  Article  Google Scholar 

  2. 2

    Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134 (2017).

    CAS  Article  Google Scholar 

  3. 3

    Martin, W. & Russell, M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. B 358, 59–85 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Martin, W. F., Sousa, F. L. & Lane, N. Energy at life's origin. Science 344, 1092–1093 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Maurel, M. & Leclerc, F. From foundation stones to life: concepts and results. Elements 12, 407–412 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Scintilla, S. et al. Duplications of an iron–sulphur tripeptide leads to the formation of a protoferredoxin. Chem. Commun. 52, 13456–13459 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Anbar, A. D. Elements and evolution. Science 322, 1481–1483 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Osterberg, R. Origins of metal ions in biology. Nature 249, 382–383 (1974).

    CAS  Article  Google Scholar 

  9. 9

    Blöchl, E., Keller, M., Wachtershäuser, G. & Stetter, K. O. Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc. Natl Acad. Sci. USA 89, 8117–8120 (1992).

    Article  Google Scholar 

  10. 10

    Cody, G. D. et al. Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 4, 895–899 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Qi, W. et al. Glutathione complexed Fe–S centers. J. Am. Chem. Soc. 134, 10745–10748 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Fiser, B. et al. Glutathione as a prebiotic answer to α-peptide based life. J. Phys. Chem. B 119, 3940–3947 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Pandelia, M. E., Lanz, N. D., Booker, S. J. & Krebs, C. Mössbauer spectroscopy of Fe/S proteins. Biochim. Biophys. Acta 1853, 1395–1405 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Duin, E. C. et al. [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36, 11811–11820 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Pasek, M. A., Kee, T. P., Bryant, D. E., Pavlov, A. A. & Lunine, J. I. Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew. Chem. Int. Ed. 47, 7918–7920 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Burcar, B. et al. Darwin's warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew. Chem. Int. Ed. 55, 13249–13253 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Venkateswara Rao, P. & Holm, R. H . Synthetic analogues of the active sites of iron–sulfur proteins. Chem. Rev. 104, 527–559 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Ranjan, S. & Sasselov, D. D. Influence of the UV environment on the synthesis of prebiotic molecules. Astrobiology 16, 68–88 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Braterman, P. S., Cairns-Smith, A. G., Sloper, R. W., Truscott, T. G. & Craw, M. Photo-oxidation of iron(II) in water between pH 7.5 and 4.0. J. Chem. Soc. Dalton Trans. 7, 1441–1445 (1984).

    Article  Google Scholar 

  22. 22

    Lill, R. Function and biogenesis of iron–sulphur proteins. Nature 460, 831–838 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Qi, W. & Cowan, J. A. Structural, mechanistic and coordination chemistry of relevance to the biosynthesis of iron–sulfur and related iron cofactors. Coord. Chem. Rev. 255, 688–699 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Mihara, H. & Esaki, N. Bacterial cysteine desulfurases: their function and mechanisms. Appl. Microbiol. Biotechnol. 60, 12–23 (2003).

    Google Scholar 

  25. 25

    Liu, Y. et al. A [3Fe–4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc. Natl Acad. Sci. USA 113, 12703–12708 (2016).

    CAS  Article  Google Scholar 

  26. 26

    Gil, R., Silva, F. J., Pereto, J. & Moya, A. Determination of the core of a minimal bacterial gene set. Microbiol. Mol. Biol. Rev. 68, 518–537 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Rapf, R. J. & Vaida, V. Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys. Chem. Chem. Phys. 18, 20067–20084 (2016).

    CAS  Article  Google Scholar 

  28. 28

    Kim, J. H., Bothe, J. R., Alderson, T. R. & Markley, J. L. Tangled web of interactions among proteins involved in iron–sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies. Biochim. Biophys. Acta 1853, 1416–1428 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics 84th edn (CRC, 2003).

  30. 30

    Yang, C. S. & Huennekens, F. M. Iron–mercaptoethanol–inorganic sulfide complex. Possible model for chromophore of nonheme iron proteins. Biochemistry 9, 2127–2133 (1970).

    CAS  Article  Google Scholar 

  31. 31

    Sugiura, Y. & Tanaka, H. Iron–sulfide chelates of some sulfur-containing peptides as model complex of non-heme iron proteins. Biochem. Biophys. Res. Commun. 46, 335–340 (1972).

    CAS  Article  Google Scholar 

  32. 32

    Mansy, S. S. & Szostak, J. W. Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb. Symp. Quant. Biol. 74, 47–54 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Stano, P. & Luisi, P. L. Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639–3653 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Monnard, P., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Belmonte, L. & Mansy, S. S. Metal catalysts and the origin of life. Elements 12, 413–418 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Hsiao, C. et al. RNA with iron(II) as a cofactor catalyses electron transfer. Nat. Chem. 5, 525–528 (2013).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the Simons Foundation (290360 to D.D.S., 290363 to J.W.S., 290362 to J.D.S., 290358 to S.S.M.), the Armenise-Harvard Foundation (to S.S.M.), COST action CM1304 (to C.B., J.D.S. and S.S.M.) and the University of Hull (to D.J.E. and S.Sh.) for funding. The authors thank L. Belmonte, C. Caumes, E. Izgu, E. Godino, N. Kamat, A. Mariani, T. Olsen, D. Rossetto, Z. Todd, O.D. Toparlak, A. Trifonov and M. Tsanakopoulou for discussions.

Author information




C.B., S.Sc., L.J., J.W.S., D.D.S., J.D.S. and S.S.M. designed the experiments. Photochemical studies, peptide synthesis and cluster stability were performed by C.B. and L.V. Mössbauer spectra were recorded and analysed by S.Sh. and D.J.E. The manuscript was written by C.B. and S.S.M. and edited by C.B., S.Sc., D.J.E., J.W.S., D.D.S., J.D.S. and S.S.M.

Corresponding author

Correspondence to Sheref S. Mansy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7991 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonfio, C., Valer, L., Scintilla, S. et al. UV-light-driven prebiotic synthesis of iron–sulfur clusters. Nature Chem 9, 1229–1234 (2017). https://doi.org/10.1038/nchem.2817

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing