Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermally bisignate supramolecular polymerization

Abstract

One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to ‘upper and lower critical solution temperature phenomena’ for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the porphyrin monomers and representation of their assembly.
Figure 2: Schematic representation of thermally bisignate supramolecular polymerization.
Figure 3: Thermodynamic association/dissociation behaviours of 1-hexanol (C6H13OH) in dodecane*.
Figure 4: Thermally bisignate supramolecular polymerization of (S)PORCu and (R)PORCu in dodecane* containing C6H13OH.
Figure 5: Thermally bisignate supramolecular polymerization of (S)PORCu in dodecane* containing C6H13OH.
Figure 6: Tuning of the optical window by thermally bisignate supramolecular polymerization.

Similar content being viewed by others

References

  1. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    CAS  PubMed  Google Scholar 

  2. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4097 (2001).

    CAS  PubMed  Google Scholar 

  3. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Besenius, P. Controlling supramolecular polymerization through multicomponent self-assembly. J. Polym. Sci. A 55, 34–78 (2017).

    CAS  Google Scholar 

  5. Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: chain extension of telechelic polymers using a relative hydrogen-bonding synthon. Adv. Mater. 12, 874–878 (2000).

    CAS  Google Scholar 

  6. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 51, 977–980 (2008).

    Google Scholar 

  7. Balkenende, D. W. R., Monnier, C. A., Fiore, G. L. & Weder, C. Optically responsive supramolecular polymer glasses. Nature Commun. 7, 10995 (2016).

    Google Scholar 

  8. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    CAS  PubMed  Google Scholar 

  9. Jain, A. & George, S. J. New directions in supramolecular electronics. Mater. Today 18, 206–214 (2015).

    CAS  Google Scholar 

  10. Korevaar, P. A., Newcomb, C. J., Meijer, E. W. & Stupp, S. I. Pathway selection in peptide amphiphile assembly. J. Am. Chem. Soc. 136, 8540–8543 (2014).

    CAS  PubMed  Google Scholar 

  11. Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089–1094 (2010).

    CAS  Google Scholar 

  12. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    CAS  Google Scholar 

  13. Boekhoven, J. et al. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  PubMed  Google Scholar 

  14. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nature Chem. 6, 188–195 (2014).

    CAS  Google Scholar 

  15. Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300−3307 (2015).

    CAS  PubMed  Google Scholar 

  16. Moulin, E. et al. The hierarchical self-assembly of charge nanocarriers: a highly cooperative process promoted by visible light. Angew. Chem. Int. Ed. 49, 6974–6978 (2010).

    CAS  Google Scholar 

  17. Smulders, M. M. J., Schenning, A. P. H. J. & Meijer, E. W. Insight into the mechanisms of cooperative self-assembly: the ‘sergeants-and-soldiers’ principle of chiral and achiral C3-symmetrical discotic triamides. J. Am. Chem. Soc. 130, 606–611 (2008).

    CAS  PubMed  Google Scholar 

  18. ArmaoIV, J. J. et al. Healable supramolecular polymers as organic metals. J. Am. Chem. Soc. 136, 11382–11388 (2014).

    Google Scholar 

  19. Ajayaghosh, A. & George, S. J. First phenylenevinylene based organogels: self-assembled nanostructures via cooperative hydrogen bonding and π-stacking. J. Am. Chem. Soc. 123, 5148−5149 (2001).

    CAS  PubMed  Google Scholar 

  20. Helmich, F. et al. Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew. Chem. Int. Ed. 49, 3939–3942 (2010).

    CAS  Google Scholar 

  21. Kleeberg, H., Klein, D. & Luck, W. A. P. Quantitative infrared spectroscopic investigations of hydrogen-bond cooperativity. J. Phys. Chem. 91, 3200–3203 (1987).

    CAS  Google Scholar 

  22. Feng, J. et al. A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. Angew. Chem. Int. Ed. 50, 8072–8076 (2011).

    CAS  Google Scholar 

  23. Tsuda, A., Sakamoto, S., Yamaguchi, K. & Aida, T. A Novel supramolecular multicolor thermometer by self-assembly of a π-extended zinc porphyrin complex. J. Am. Chem. Soc. 125, 15722–15723 (2003).

    CAS  PubMed  Google Scholar 

  24. Park, M. H., Joo, M. K., Choi, B. G. & Jeong, B. Biodegradable thermogels. Acc. Chem. Res. 45, 424–433 (2012).

    CAS  PubMed  Google Scholar 

  25. Moon, H. J., Ko, D. Y., Park, M. H., Joo, M. K. & Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 41, 4860–4883 (2012).

    CAS  PubMed  Google Scholar 

  26. Heskins, M. & Guillet, J. E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. 2, 1441–1455 (1968).

    CAS  Google Scholar 

  27. Bai, Y. et al. Nonionic cyclodextrin based binary system with upper and lower critical solution temperature transitions via supramolecular inclusion interaction. Langmuir 30, 7319−7326 (2014).

    PubMed  Google Scholar 

  28. Mori, H., Kato, I., Saito, S. & Endo, T. Proline-based block copolymers displaying upper and lower critical solution temperatures. Macromolecules 43, 1289–1298 (2010).

    CAS  Google Scholar 

  29. Amemori, S., Kokado, K. & Sada, K. Fundamental molecular design for precise control of thermoresponsiveness of organic polymers by using ternary systems. J. Am. Chem. Soc. 134, 8344–8347 (2012).

    CAS  PubMed  Google Scholar 

  30. Folmer-Andersen, J. F. & Lehn, J.-M. Thermoresponsive dynamers: thermally induced, reversible chain elongation of amphiphilic poly(acylhydrazones). J. Am. Chem. Soc. 133, 10966–10973 (2011).

    CAS  PubMed  Google Scholar 

  31. de la Rosa, V. R., Woisel, P. & Hoogenboom, R. Supramolecular control over thermoresponsive polymers. Mater. Today 19, 44–55 (2016).

    CAS  Google Scholar 

  32. Amemori, S., Kokado, K. & Sada, K. Polymer phase-transition behavior driven by a charge-transfer interaction. Angew. Chem. Int. Ed. 52, 4174–4178 (2013).

    CAS  Google Scholar 

  33. Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nature Mater. 9, 594–601 (2010).

    CAS  Google Scholar 

  34. Huang, Z. et al. Responsive nematic gels from the self-assembly of aqueous nanofibres. Nature Commun. 2, 459 (2011).

    Google Scholar 

  35. Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nature Commun. 6, 7009 (2015).

    Google Scholar 

  36. Görl, D. & Würthner, F. Entropically driven self-assembly of bolaamphiphilic perylene dyes in water. Angew. Chem. Int. Ed. 55, 12094–12098 (2016).

    Google Scholar 

  37. Saito, N., Kobayashi, H. & Yamaguchi, M. ‘Inverse’ thermoresponse: heat-induced double helix formation of an ethynylhelicene oligomer with tri(ethylene glycol) termini. Chem. Sci. 7, 3574–3580 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiyonaka, S., Sugiyasu, K., Shinkai, S. & Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J. Am. Chem. Soc. 124, 10954–10955 (2002).

    CAS  PubMed  Google Scholar 

  39. Das, A. & Ghosh, S. Stimuli-responsive self-assembly of a naphthalene diimide by orthogonal hydrogen bonding and its coassembly with a pyrene derivative by a pseudo-intramolecular charge-transfer interaction. Angew. Chem. Int. Ed. 53, 1092–1097 (2014).

    CAS  Google Scholar 

  40. Kuroiwa, K., Shibata, T., Takada, A., Nemoto, N. & Kimizuka, N. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. J. Am. Chem. Soc. 126, 2016–2021 (2004).

    CAS  PubMed  Google Scholar 

  41. Kim, Y. et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14, 1002–1007 (2015).

    CAS  PubMed  Google Scholar 

  42. Yoshida, R. et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374, 240–242 (1995).

    CAS  Google Scholar 

  43. Xia, L.-W., Ju, X.-J., Liu, J.-J., Xie, R. & Chu, L.-Y. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. J. Colloid Interface Sci. 349, 106–113 (2010).

    CAS  PubMed  Google Scholar 

  44. Helmich, F. et al. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. J. Am. Chem. Soc. 132, 16753–16755 (2010).

    CAS  PubMed  Google Scholar 

  45. Helmich, F. et al. Effect of stereogenic centers on the self-sorting, depolymerization, and atropisomerization kinetics of porphyrin-based aggregates. J. Am. Chem. Soc. 133, 12238–12246 (2011).

    CAS  PubMed  Google Scholar 

  46. Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M. & Rowan, A. E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 18, 1251–1266 (2006).

    CAS  Google Scholar 

  47. Hirose, T., Helmich, F. & Meijer, E. W. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands. Angew. Chem. Int. Ed. 52, 304–309 (2013).

    CAS  Google Scholar 

  48. Hayashi, S., Yotsukura, M., Noji, M. & Takanami, T. Bis(zinc porphyrin) as a CD-sensitive bidentate host molecule: direct determination of absolute configuration of mono-alcohols. Chem. Commun. 51, 11068–11071 (2015).

    CAS  Google Scholar 

  49. Folmer, B. J. B., Sijbesma, R. P. & Meijer, E. W. Unexpected entropy-driven ring-opening polymerization in a reversible supramolecular system. J. Am. Chem. Soc. 123, 2093–2094 (2001).

    CAS  PubMed  Google Scholar 

  50. Vermonden, T. et al. Water-soluble reversible coordination polymers: chains and rings. Macromolecules 36, 7035–7044 (2003).

    CAS  Google Scholar 

  51. Indekeu, J. O. & Berker, A. N. Molecular structure and reentrant phases in polar liquid crystals. J. Phys. France 49, 353–362 (1988).

    CAS  Google Scholar 

  52. Isojima, T., Fujii, S., Kubota, K. & Hamano, K. Double critical behavior and micellar size effect in the multicomponent surfactant solution. J. Chem. Phys. 113, 3916–3925 (2000).

    CAS  Google Scholar 

  53. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    CAS  PubMed  Google Scholar 

  54. Smulder, M. M. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) through its Grants-in-Aid for Specially Promoted Research (25000005) on ‘Physically Perturbed Assembly for Tailoring High-Performance Soft Materials with Controlled Macroscopic Structural Anisotropy’, Young Scientist A (15H05487), Coordination Asymmetry (JP17H05394) together (grants sponsored by the Japan Society for the Promotion of Science) with the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). K.V.R. thanks the JSPS for a post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.V.R. designed and performed all of the experiments. D.M. and T.A. co-designed the experiments. A.N. synthesized all of the porphyrin derivatives. K.V.R., D.M. and T.A. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Daigo Miyajima or Takuzo Aida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkata Rao, K., Miyajima, D., Nihonyanagi, A. et al. Thermally bisignate supramolecular polymerization. Nature Chem 9, 1133–1139 (2017). https://doi.org/10.1038/nchem.2812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing