Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

Abstract

The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual blueprint for the development of a CO- and HCl-free synthesis of acid chlorides via shuttle catalysis.
Figure 2: Applications of the hydrochlorocarbonylation reaction.
Figure 3: Labelling studies.

Similar content being viewed by others

References

  1. Brennführer, A., Neumann, H. & Beller, M. Palladium-catalyzed carbonylation reactions of alkenes and alkynes. ChemCatChem 1, 28–41 (2009).

    Article  Google Scholar 

  2. Wu, X.-F. et al. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account. Acc. Chem. Res. 47, 1041–1053 (2014).

    Article  CAS  Google Scholar 

  3. Ali, B. E. & Alper, H. in Transition Metals for Organic Synthesis (eds Beller, M. & Bolm, C.) 113–132 (Wiley-VCH, 2008).

    Google Scholar 

  4. Kiss, G. Palladium-catalyzed Reppe carbonylation. Chem. Rev. 101, 3435–3456 (2001).

    Article  CAS  Google Scholar 

  5. Wu, L., Liu, Q., Jackstell, R. & Beller, M. Carbonylations of alkenes with CO surrogates. Angew. Chem. Int. Ed. 53, 6310–6320 (2014).

    Article  CAS  Google Scholar 

  6. Friis, S. D., Lindhardt, A. T. & Skrydstrup, T. The development and application of two-chamber reactors and carbon monoxide precursors for safe carbonylation reactions. Acc. Chem. Res. 49, 594–605 (2016).

    Article  CAS  Google Scholar 

  7. Wu, L., Liu, Q., Fleischer, I., Jackstell, R. & Beller, M. Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat. Commun 5, 3091 (2014).

    Article  Google Scholar 

  8. Hermange, P. et al. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. J. Am. Chem. Soc. 133, 6061–6071 (2011).

    Article  CAS  Google Scholar 

  9. Morimoto, T. & Kakiuchi, K. Evolution of carbonylation catalysis: no need for carbon monoxide. Angew. Chem. Int. Ed. 43, 5580–5588 (2004).

    Article  CAS  Google Scholar 

  10. Morimoto, T. et al. Rh(I)-catalyzed CO gas-free carbonylative cyclization reactions of alkynes with 2-bromophenylboronic acids using formaldehyde. Org. Lett. 11, 1777–1780 (2009).

    Article  CAS  Google Scholar 

  11. Wang, X., Nakajima, M., Serrano, E. & Martin, R. Alkyl bromides as mild hydride sources in Ni-catalyzed hydroamidation of alkynes with isocyanates. J. Am. Chem. Soc. 138, 15531–15534 (2016).

    Article  CAS  Google Scholar 

  12. Donets, P. A. & Cramer, N. Diaminophosphine oxide ligand enabled asymmetric nickel-catalyzed hydrocarbamoylations of alkenes. J. Am. Chem. Soc. 135, 11772–11775 (2013).

    Article  CAS  Google Scholar 

  13. Park, H.-S., Kim, D.-S. & Jun, C.-H. Palladium-catalyzed carbonylative esterification of primary alcohols with aryl chlorides through dehydroxymethylative C–C bond cleavage. ACS Catal. 5, 397–401 (2015).

    Article  CAS  Google Scholar 

  14. Smith, M. B. & March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 6th edn (Wiley-Interscience, 2007).

    Google Scholar 

  15. Patai, S. The Chemistry of Acyl Halides (Interscience, 1972).

    Book  Google Scholar 

  16. Diederich, F. & Stang, P. Metal-Catalyzed Cross-Coupling Reactions (Wiley-VCH, 1998).

    Book  Google Scholar 

  17. Le, C. M. et al. Stereoselective synthesis of methylene oxindoles via palladium(II)-catalyzed intramolecular cross-coupling of carbamoyl chlorides. J. Am. Chem. Soc. 138, 14441−14448 (2016).

    Article  CAS  Google Scholar 

  18. Quesnel, J. S. & Arndtsen, B. A. A palladium-catalyzed carbonylation approach to acid chloride synthesis. J. Am. Chem. Soc. 135, 16841−16844 (2013).

    Article  CAS  Google Scholar 

  19. Quesnel, J. S., Kayser, L. V., Fabrikant, A. & Arndtsen, B. A. Acid chloride synthesis by the palladium-catalyzed chlorocarbonylation of aryl bromides. Chem. Eur. J. 21, 9550−9555 (2015).

    Article  CAS  Google Scholar 

  20. Cernak, T. A. & Lambert, T. H. Multicatalytic synthesis of α-pyrrolidinyl ketones via a tandem palladium(II)/indium(III)-catalyzed aminochlorocarbonylation/Friedel−Crafts acylation reaction. J. Am. Chem. Soc. 131, 3124–3125 (2009).

    Article  CAS  Google Scholar 

  21. Alderson, T. & Engelhardt, V. A. Production of acyl halides, carboxylic acids and lactones. US patent 3,065,242 (1962).

  22. Knifton, J. F. Process for preparing halogenides of carboxylic acids. US patent 3,880,898 (1975).

  23. Fang, X., Yu, P. & Morandi, B. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation. Science 351, 832–836 (2016).

    Article  CAS  Google Scholar 

  24. Bhawal, B. N. & Morandi, B. Catalytic transfer functionalization through shuttle catalysis. ACS Catal. 6, 7528−7535 (2016).

    Article  CAS  Google Scholar 

  25. Murphy, S. K., Park, J.-W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science 347, 56–60 (2015).

    Article  CAS  Google Scholar 

  26. Landis, C. R. Construction and deconstruction of aldehydes by transfer hydroformylation. Science 347, 29–30 (2015).

    Article  CAS  Google Scholar 

  27. Park, Y. J., Park, J.-W. & Jun, C.-H. Metal−organic cooperative catalysis in C−H and C−C bond activation and its concurrent recovery. Acc. Chem. Res. 41, 222–234 (2008).

    Article  CAS  Google Scholar 

  28. Kamer, P. C. J., van Leeuwen, P. W. N. M. & Reek, J. N. H. Wide bite angle diphosphines: Xantphos ligands in transition metal complexes and catalysis. Acc. Chem. Res. 34, 895–904 (2001).

    Article  CAS  Google Scholar 

  29. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3746 (2001).

    Article  CAS  Google Scholar 

  30. Waldo, J. P., Mehta, S. & Larock, R. C. Room temperature ICl-induced dehydration/iodination of 1-acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles. A selective route to substituted 1-acyl-4-iodo-1H-pyrazoles. J. Org. Chem. 73, 6666–6670 (2008).

    Article  CAS  Google Scholar 

  31. Urawa, Y., Nishiura, K., Souda, S. & Ogura, K. A convenient method for preparing aromatic α,β-unsaturated ketones from α,β-unsaturated acyl chlorides and arylboronic acids via Suzuki–Miyaura type coupling reaction. Synthesis 2882–2885 (2003).

  32. Scheiper, B., Bonnekessel, M., Krause, H. & Fürstner, A. Selective iron-catalyzed cross-coupling reactions of Grignard reagents with enol triflates, acid chlorides, and dichloroarenes. J. Org. Chem. 69, 3943–3949 (2004).

    Article  CAS  Google Scholar 

  33. Lee, H.-S., Park, J.-S., Kim, B. M. & Gellman, S. H. Efficient synthesis of enantiomerically pure β2-amino acids via chiral isoxazolidinones. J. Org. Chem. 68, 1575–1578 (2003).

    Article  CAS  Google Scholar 

  34. Monteil, T. et al. Process for synthesizing N-(mercaptoacyl) amino acid derivatives from alpha-substituted acrylic acids. US patent 0055645 A1 (2002).

  35. Liu, Y., Virgil, S. C., Grubbs, R. H. & Stoltz, B. M. Palladium-catalyzed decarbonylative dehydration for the synthesis of α-vinyl carbonyl compounds and total synthesis of (–)-aspewentins A, B, and C. Angew. Chem. Int. Ed. 54, 11800–11803 (2015).

    Article  CAS  Google Scholar 

  36. Gooßen, L. J. & Rodriguez, N. A mild and efficient protocol for the conversion of carboxylic acids to olefins by a catalytic decarbonylative elimination reaction. Chem. Commun. 724–725 (2004).

  37. Tsuji, J. & Ohno, K. Organic syntheses by means of noble metal compounds. XXXIV. Carbonylation and decarbonylation reactions catalyzed by palladium. J. Am. Chem. Soc. 90, 94−98 (1968).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. M. Carreira, B. Bhawal, M. Schafroth, Z. K. Wickens and N. Armanino for critical proofreading of this manuscript. Generous funding from the Max-Planck-Society, the Max-Planck-Institut für Kohlenforschung, the Otto Röhm Gedächtnisstiftung and the Fonds der Chemischen Industrie are acknowledged. We thank B. List for sharing analytical equipment and our mass spectrometry department for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

B.M. and X.F. conceived the project and designed the experiments. X.F. and B.C. performed the experiments and analysed the data. B.M. and X.F. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bill Morandi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Cacherat, B. & Morandi, B. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nature Chem 9, 1105–1109 (2017). https://doi.org/10.1038/nchem.2798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing