Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct, enantioselective α-alkylation of aldehydes using simple olefins

Abstract

Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct enantioselective α-alkylation of aldehydes with olefins via triple catalytic activation.
Figure 2: Proposed mechanism for aldehyde α-alkylation via photoredox, HAT and organocatalysis.
Figure 3: Intermolecular α-alkylation of aldehydes with non-functionalized olefins.

Similar content being viewed by others

References

  1. Caine, D. in Comprehensive Organic Synthesis Vol. 2 (ed. Trost, B. M.) Ch 1.1 (Pergamon, 1991).

    Google Scholar 

  2. Corey, E. J. & Enders, D. Applications of N,N-dimethylhydrazones to synthesis. Use in efficient, positionally and stererochemically selective C–C bond formation; oxidative hydrolysis to carbonyl compounds. Tetrahedron Lett. 17, 3–6 (1976).

    Article  Google Scholar 

  3. Evans, D. A., Ennis, M. D. & Mathre, D. J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives. J. Am. Chem. Soc. 104, 1737–1739 (1982).

    Article  CAS  Google Scholar 

  4. Dolling, U.-H., Davis, P. & Grabowski, E. J. J. Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis. J. Am. Chem. Soc. 106, 446–447 (1984).

    Article  CAS  Google Scholar 

  5. Doyle, A. G. & Jacobsen, E. N. Enantioselective alkylation of acyclic α,α-disubstituted tributyltin enolates catalyzed by a {Cr(salen)} complex. Angew. Chem. Int. Ed. 46, 3701–3705 (2007).

    Article  CAS  Google Scholar 

  6. Mitsuko, I., Hagihara, A., Kawasaki, H., Manabe, K. & Koga, K. Catalytic asymmetric benzylation of achiral lithium enolates using a chiral ligand for lithium in the presence of an achiral ligand. J. Am. Chem. Soc. 116, 8829–8830 (1994).

    Article  Google Scholar 

  7. Eder, U., Sauer, G. & Wiechert, R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew. Chem. Int. Ed. 10, 496–497 (1971).

    Article  CAS  Google Scholar 

  8. Hajos, Z. G. & Parrish, D. R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 39, 1615–1621 (1974).

    Article  CAS  Google Scholar 

  9. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  Google Scholar 

  10. Mo, F. & Dong, G. Regioselective ketone α-alkylation with simple olefins via dual activation. Science 345, 68–72 (2014).

    Article  CAS  Google Scholar 

  11. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  Google Scholar 

  12. Vignola, N. & List, B. Catalytic asymmetric intramolecular α-alkylation of aldehydes. J. Am. Chem. Soc. 126, 450–451 (2004).

    Article  CAS  Google Scholar 

  13. Beeson, T. D., Mastracchio, A., Hong, J., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    Article  CAS  Google Scholar 

  14. Jui, N. T., Garber, J. A. O., Finelli, F. G. & MacMillan, D. W. C. Enantioselective organo-SOMO cycloadditions: a catalytic appraoch to complex pyrrolidines from olefins and aldehydes. J. Am. Chem. Soc. 134, 11400–11403 (2012).

    Article  CAS  Google Scholar 

  15. Conrad, J. C., Kong, J., Laforteza, B. N. & MacMillan, D. W. C. Enantioselective arylation of aldehydes via organo-SOMO catalysis. An ortho-selective α-arylation reaction based on an open-shell pathway. J. Am. Chem. Soc. 131, 11640–11641 (2009).

    Article  CAS  Google Scholar 

  16. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6896–6926 (2016).

    Article  Google Scholar 

  17. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  18. Hamilton, D. S. & Nicewicz, D. A. Direct catalytic anti-Markovnikov hydroetherification of alkenols. J. Am. Chem. Soc. 134, 18577–18580 (2012).

    Article  CAS  Google Scholar 

  19. Qvortrup, K., Rankic, D. A. & MacMillan, D. W. C. A general strategy for organocatalytic activation of C–H bonds via photoredox catalysis: direct arylation of benzylic ethers. J. Am. Chem. Soc. 136, 626–629 (2014).

    Article  CAS  Google Scholar 

  20. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  21. Venimadhavan, S., Amarnath, K., Harvey, N. G., Cheng, J.-P. & Arnett, E. M. Heterolysis, homolysis, and cleavage energies for the cation radicals of some carbon–sulfur bonds. J. Am. Chem. Soc. 114, 221–229 (1992).

    Article  CAS  Google Scholar 

  22. Franz, J. A., Bushaw, B. A. & Alnajjar, M. S. Absolute rate expressions for the abstraction of hydrogen by primary, secondary, and tertiary alkyl radicals from thiophenol. J. Am. Chem. Soc. 111, 268–275 (1989).

    Article  CAS  Google Scholar 

  23. Bordwell, F. G., Cheng, J.-P. & Harrelson, J. A. Jr Homolytic bond dissociation energies in solution from equilibrium acidity and electrochemical data. J. Am. Chem. Soc. 110, 1229–1231 (1988).

    Article  CAS  Google Scholar 

  24. Wade, L. G. in Structure and Stereochemistry of Alkanes; Organic Chemistry 6th edn, 103–122 (Pearson Prentice Hall, 2006).

    Google Scholar 

  25. Curran, D. P. in Comprehensive Organic Synthesis Vol. 4 (ed. Trost, B. M.) Ch 4.1 (Pergamon, 1991).

    Google Scholar 

  26. Terrett, J. A., Clift, M. D. & MacMillan, D. W. C. Direct β-alkylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 136, 6858–6861 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences (NIGMS), the NIH (under award no. R01 GM078201-05) to D.W.C.M., A.G.C., J.T.M., N.J.M. and J.K. and by gifts from Merck, Abbvie, BMS and Janssen. J.T.M. acknowledges the NIH for a postdoctoral fellowship (F32 GM108217-02). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS.

Author information

Authors and Affiliations

Authors

Contributions

A.G.C., J.T.M., N.J.M. and J.K. performed and analysed experiments. A.G.C., J.T.M., N.J.M., J.K. and D.W.C.M. designed experiments to develop the intramolecular variant of this reaction and probe its utility. A.G.C., N.J.M., and D.W.C.M. designed experiments to develop the intermolecular variant of this reaction and probe its utility. A.G.C. and D.W.C.M. prepared this manuscript.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capacci, A., Malinowski, J., McAlpine, N. et al. Direct, enantioselective α-alkylation of aldehydes using simple olefins. Nature Chem 9, 1073–1077 (2017). https://doi.org/10.1038/nchem.2797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2797

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing