Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

Abstract

Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor–bridge–acceptor–bridge–donor ‘fork’ system: asymmetric 13C isotopic labelling of one of the two –C≡C– bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)–IRpump(perturbation)–IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Summary of the multipulse IR-control experiments.
Figure 2: Ground-state infrared absorption properties of 1* in CD2Cl2.
Figure 3: Summary of excited-state dynamics with and without vibrational perturbation in CH2Cl2, with the middle panel showing results for ν(13C) excitation and the right panel for ν(12C) excitation (2,016 and 2,104 cm−1, respectively).
Figure 4: Modelling of the kinetic evolution of the off-diagonal response in IR-control experiments.

References

  1. 1

    Fleming, G. R. & Ratner, M. A. Grand challenges in basic energy sciences. Phys. Today 61, 28–33 (2008).

    Google Scholar 

  2. 2

    Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 100, 13148–13168 (1996).

    CAS  Google Scholar 

  3. 3

    Schrauben, J. N., Dillman, K. L., Beck, W. F. & McCusker, J. K. Vibrational coherence in the excited state dynamics of Cr(acac)3: probing the reaction coordinate for ultrafast intersystem crossing. Chem. Sci. 1, 405–410 (2010).

    CAS  Google Scholar 

  4. 4

    Auböck, G. & Chergui, M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+. Nat. Chem. 7, 629–633 (2015).

    PubMed  Google Scholar 

  5. 5

    Johnson, P. J. M. et al. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 7, 980–986 (2015).

    CAS  PubMed  Google Scholar 

  6. 6

    Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014).

    CAS  PubMed  Google Scholar 

  8. 8

    Oliver, T. A. A. & Fleming, G. R. Following coupled electronic-Nuclear motion through conical intersections in the ultrafast relaxation of β-Apo-8′-carotenal. J. Phys. Chem. B 119, 11428–11441 (2015).

    CAS  PubMed  Google Scholar 

  9. 9

    Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    CAS  PubMed  Google Scholar 

  10. 10

    Christensson, N., Kauffmann, H. F., Pullerits, T. & Mančal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013).

    CAS  Google Scholar 

  12. 12

    Lin, Z. et al. Modulating unimolecular charge transfer by exciting bridge vibrations. J. Am. Chem. Soc. 131, 18060–18062 (2009).

    CAS  PubMed  Google Scholar 

  13. 13

    Yue, Y. et al. Electron transfer rate modulation in a compact Re(I) donor-acceptor complex. Dalton Trans. 44, 8609–8616 (2015).

    CAS  PubMed  Google Scholar 

  14. 14

    Bakulin, A. A. et al. Mode-selective vibrational modulation of charge transport in organic electronic devices. Nat. Commun. 6, 7880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Delor, M. et al. Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation. Science 346, 1492–1495 (2014).

    CAS  PubMed  Google Scholar 

  16. 16

    Delor, M. et al. On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies. Nat. Chem. 7, 689–695 (2015).

    CAS  PubMed  Google Scholar 

  17. 17

    Skourtis, S. S., Waldeck, D. H. & Beratan, D. N. Inelastic electron tunneling erases coupling-pathway interferences. J. Phys. Chem. B 108, 15511–15518 (2004).

    CAS  Google Scholar 

  18. 18

    Xiao, D., Skourtis, S. S., Rubtsov, I. V . & Beratan, D. N. Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Lett. 9, 1818–1823 (2009).

    CAS  PubMed  Google Scholar 

  19. 19

    Carias, H., Beratan, D. N. & Skourtis, S. S. Floquet analysis for vibronically modulated electron tunneling. J. Phys. Chem. B 115, 5510–5518 (2011).

    CAS  PubMed  Google Scholar 

  20. 20

    Antoniou, P., Ma, Z., Zhang, P., Beratan, D. N. & Skourtis, S. S. Vibrational control of electron-transfer reactions: a feasibility study for the fast coherent transfer regime. Phys. Chem. Chem. Phys. 17, 30854–30866 (2015).

    CAS  PubMed  Google Scholar 

  21. 21

    McGarrah, J. E. & Eisenberg, R. Dyads for photoinduced charge separation based on platinum diimine bis(acetylide) chromophores: synthesis, luminescence and transient absorption studies. Inorg. Chem. 42, 4355–4365 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Sazanovich, I. V. et al. Ultrafast photoinduced charge transport in Pt(II) donor–acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor. Phys. Chem. Chem. Phys. 16, 25775–25788 (2014).

    CAS  PubMed  Google Scholar 

  23. 23

    McGarrah, J. E., Hupp, J. T. & Smirnov, S. N. Electron transfer in platinum(II) diimine-centered triads: mechanistic insights from photoinduced transient displacement current measurements. J. Phys. Chem. A 113, 6430–6436 (2009).

    CAS  PubMed  Google Scholar 

  24. 24

    Archer, S. A., Keane, T., Delor, M., Meijer, A. J. H. M. & Weinstein, J. A. 13C or not 13C: selective synthesis of asymmetric carbon-13-labeled platinum(II) cis-Acetylides. Inorg. Chem. 55, 8251–8253 (2016).

    CAS  PubMed  Google Scholar 

  25. 25

    Lipkin, J. S., Song, R., Fenlon, E. E. & Brewer, S. H. Modulating accidental Fermi resonance: what a difference a neutron makes. J. Phys. Chem. Lett. 2, 1672–1676 (2011).

    CAS  Google Scholar 

  26. 26

    Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).

    Google Scholar 

  27. 27

    Glik, E. A. et al. Ultrafast excited state dynamics of Pt(II) chromophores bearing multiple infrared absorbers. Inorg. Chem. 47, 6974–6983 (2008).

    CAS  PubMed  Google Scholar 

  28. 28

    Archer, S. & Weinstein, J. A. Charge-separated excited states in platinum(II) chromophores: photophysics, formation, stabilization and utilization in solar energy conversion. Coord. Chem. Rev. 256, 2530–2561 (2012).

    CAS  Google Scholar 

  29. 29

    McCusker, J. K. Femtosecond absorption spectroscopy of transition metal charge-transfer complexes. Acc. Chem. Res. 36, 876–887 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Spears, K. G., Wen, X. & Zhang, R. Electron transfer rates from vibrational quantum states. J. Phys. Chem. 100, 10206–10209 (1996).

    CAS  Google Scholar 

  31. 31

    Crim, F. F. Bond-selected chemistry: vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100, 12725–12734 (1996).

    CAS  Google Scholar 

  32. 32

    Crim, F. F. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. Proc. Natl Acad. Sci. USA 105, 12654–12661 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Roberts, G. M. et al. Exploring quantum phenomena and vibrational control in σ* mediated photochemistry. Chem. Sci. 4, 993–1001 (2013).

    CAS  Google Scholar 

  34. 34

    Nazarov, A. E., Barykov, V. Y. & Ivanov, A. I. Effect of excitation pulse carrier frequency on ultrafast photoinduced charge transfer kinetics: effect of intramolecular high frequency vibrational mode excitation. J. Phys. Chem. C 119, 2989–2995 (2015).

    Google Scholar 

  35. 35

    Delor, M., Sazanovich, I. V., Towrie, M. & Weinstein, J. A. Probing and exploiting the interplay between nuclear and electronic motion in charge transfer processes. Acc. Chem. Res. 48, 1131–1139 (2015).

    CAS  PubMed  Google Scholar 

  36. 36

    Scattergood, P. A. et al. Electron transfer dynamics and excited state branching in a charge-transfer platinum(II) donor-bridge-acceptor assembly. Dalt. Trans. 43, 17677–17693 (2014).

    CAS  Google Scholar 

  37. 37

    Kasyanenko, V. M., Lin, Z., Rubtsov, G. I., Donahue, J. P. & Rubtsov, I. V. Energy transport via coordination bonds. J. Chem. Phys. 131, 154508 (2009).

    PubMed  Google Scholar 

  38. 38

    Rubtsov, I. V. Relaxation-assisted two-dimensional infrared (RA 2DIR) method: accessing distances over 10 Å and measuring bond connectivity patterns. Acc. Chem. Res. 42, 1385–1394 (2009).

    CAS  PubMed  Google Scholar 

  39. 39

    Park, K.-H. et al. Infrared probes based on nitrile-derivatized prolines: thermal insulation effect and enhanced dynamic range. J. Phys. Chem. Lett. 4, 2105–2110 (2013).

    CAS  Google Scholar 

  40. 40

    Delor, M. et al. Dynamics of ground and excited state vibrational relaxation and energy transfer in transition metal carbonyls. J. Phys. Chem. B 118, 11781–11791 (2014).

    CAS  PubMed  Google Scholar 

  41. 41

    Fedoseeva, M. et al. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes. Phys. Chem. Chem. Phys. 17, 1688–1696 (2015).

    CAS  PubMed  Google Scholar 

  42. 42

    Dereka, B., Rosspeintner, A., Li, Z., Liska, R. & Vauthey, E. Direct visualization of excited-state symmetry breaking using ultrafast time-resolved infrared spectroscopy. J. Am. Chem. Soc. 138, 4643–4649 (2016).

    CAS  PubMed  Google Scholar 

  43. 43

    Dorfman, K. E., Zhang, Y. & Mukamel, S. Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes. Proc. Natl Acad. Sci. USA 113, 10001–10006 (2016).

    CAS  PubMed  Google Scholar 

  44. 44

    Vogt, G., Nuernberger, P., Brixner, T. & Gerber, G. Femtosecond pump–shaped-dump quantum control of retinal isomerization in bacteriorhodopsin. J. Chem. Phys. Lett. 433, 211–215 (2006).

    CAS  Google Scholar 

  45. 45

    Dietzek, B., Bruggemann, B., Pascher, T. & Yartsev, A. Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye. J. Am. Chem. Soc. 129, 13014–13021 (2007).

    CAS  PubMed  Google Scholar 

  46. 46

    Debreczeny, M. P., Svec, W. A., Marsh, E. M. & Wasielewski, M. R. Femtosecond optical control of charge shift within electron donor–acceptor arrays : an approach to molecular switches. J. Am. Chem. Soc. 118, 8174–8175 (1996).

    CAS  Google Scholar 

  47. 47

    Greetham, G. et al. ULTRA: a unique instrument for time-resolved spectroscopy. Appl. Spectrosc. 64, 1311–1319 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of the EPSRC, the E-Futures Doctoral Training Centre, the University of Sheffield, and the STFC, including access to beam time, is gratefully acknowledged. We thank A. W. Parker for inspiring discussions, and E. Greenough, G. Farrow, A. Auty, and A. Sadler for help with variable temperature measurements.

Author information

Affiliations

Authors

Contributions

M.D. and J.A.W. conceived the hypothesis; M.D., I.V.S. and J.A.W. designed the experiments; M.D., S.A.A. and I.V.S. conducted the experiments on a set-up built and operated by M.T., G.M.G. and I.V.S.; M.D. analysed the experimental data; S.A.A. synthesized the molecules; T.K. and A.J.H.M.M. performed supporting DFT calculations; M.D. and J.A.W. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Milan Delor or Julia A. Weinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1129 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delor, M., Archer, S., Keane, T. et al. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation. Nature Chem 9, 1099–1104 (2017). https://doi.org/10.1038/nchem.2793

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing