Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Natural products

Taming reactive benzynes

Natural products often serve as sources of new drugs, either directly or after synthetic modification, but site-selective functionalization of complex small molecules is challenging. Now, a method has been developed that enables selective modification of a wide range of natural products by engaging a benzyne intermediate in a variety of reaction modes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of the diverse reaction modes observed when complex natural products are reacted with a benzyne intermediate generated via a hexadehydro-Diels–Alder reaction.

Similar content being viewed by others


  1. Newman, D. J. & Cragg, G. M. J. Nat. Prod. 79, 629–661 (2016).

    Article  CAS  Google Scholar 

  2. Guénard, D., Guéritte-Voegelein, F. & Potier, P. Acc. Chem. Res. 26, 160–167 (1993).

    Article  Google Scholar 

  3. Hunt, J. T. Mol. Cancer Ther. 8, 275–281 (2009).

    Article  CAS  Google Scholar 

  4. Wright, P. M., Seiple, I. B. & Myers, A. G. Angew. Chem. Int. Ed. 53, 8840–8869 (2014).

    Article  CAS  Google Scholar 

  5. Robles, O. & Romo, D. Nat. Prod. Rep. 31, 318–334 (2014).

    Article  CAS  Google Scholar 

  6. Hartwig, J. F. J. Am. Chem. Soc. 138, 2–24 (2016).

    Article  CAS  Google Scholar 

  7. Chen, M. S. & White, M. C. Science 318, 783–787 (2007).

    Article  CAS  Google Scholar 

  8. Li, J. et al. Nat. Chem. 5, 510–517 (2013).

    Article  CAS  Google Scholar 

  9. He, J., Hamann, L. G., Davies, H. M. L. & Beckwith, R. E. J. Nat. Commun. 6, 5943 (2015).

    Article  Google Scholar 

  10. Liu, W. & Groves, J. T. Acc. Chem. Res. 48, 1727–1735 (2015).

    Article  CAS  Google Scholar 

  11. Quinn, R. K. et al. J. Am. Chem. Soc. 138, 696–702 (2016).

    Article  CAS  Google Scholar 

  12. Karimov, R. R., Sharma, A. & Hartwig, J. F. ACS Cent. Sci. 2, 715–724 (2016).

    Article  CAS  Google Scholar 

  13. Ross, S. P. & Hoye, T. R. Nat. Chem. 9, 523–530 (2017).

    Article  CAS  Google Scholar 

  14. Hoye, T. R., Baire, B., Niu, D., Willoughby, P. H. & Woods, B. P. Nature 490, 208–212 (2012).

    Article  CAS  Google Scholar 

  15. Wang, T., Niu, D. & Hoye, T. R. J. Am. Chem. Soc. 138, 7832–7835 (2016).

    Article  CAS  Google Scholar 

  16. Mayr, H. & Ofial, A. R. Angew. Chem. Int. Ed. 45, 1844–1854 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul J. Hergenrother.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasker, S., Hergenrother, P. Taming reactive benzynes. Nature Chem 9, 504–506 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing