Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

Abstract

One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design strategy of endosomolytic peptides and their selection.
Figure 2: Cytosolic delivery of bioactive proteins using L17E.
Figure 3: Cytosolic proteins targeted via intracellularly delivered antibodies using L17E.
Figure 4: Biophysical study on the perturbation of membranes by L17E.
Figure 5: Inhibitor studies: L17E has a physiological effect that induces macropinocytosis and promotes cellular uptake.

Similar content being viewed by others

References

  1. Guillard, S., Minter, R. R. & Jackson, R. H. Engineering therapeutic proteins for cell entry: the natural approach. Trends Biotechnol. 33, 163–171 (2015).

    Article  CAS  Google Scholar 

  2. Kaiser, P. D., Maier, J., Traenkle, B., Emele, F. & Rothbauer, U. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochim. Biophys. Acta 1844, 1933–1942 (2014).

    Article  CAS  Google Scholar 

  3. Romer, T., Leonhardt, H. & Rothbauer, U. Engineering antibodies and proteins for molecular in vivo imaging. Curr. Opin. Biotechnol. 22, 882–887 (2011).

    Article  CAS  Google Scholar 

  4. Cerrato, C. P., Kunnapuu, K. & Langel, U. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin. Drug Deliv. 14, 245–255 (2016).

    Article  Google Scholar 

  5. Ozay, E. I. et al. Intracellular delivery of anti-pPKCθ (Thr538) via protein transduction domain mimics for immunomodulation. Mol. Ther. 24, 2118–2130 (2016).

    Article  CAS  Google Scholar 

  6. Erazo-Oliveras, A. et al. Protein delivery into live cells by incubation with an endosomolytic agent. Nat. Methods 11, 861–867 (2014).

    Article  CAS  Google Scholar 

  7. Abraham, A. et al. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci. Rep. 6, 21803 (2016).

    Article  CAS  Google Scholar 

  8. Dalkara, D., Zuber, G. & Behr, J. P. Intracytoplasmic delivery of anionic proteins. Mol. Ther. 9, 964–969 (2004).

    Article  CAS  Google Scholar 

  9. Kondo, Y. et al. Efficient delivery of antibody into living cells using a novel HVJ envelope vector system. J. Immunol. Methods 332, 10–17 (2008).

    Article  CAS  Google Scholar 

  10. Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci. USA 113, 2868–2873 (2016).

    Article  CAS  Google Scholar 

  11. El-Sayed, A., Futaki, S. & Harashima, H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 11, 13–22 (2009).

    Article  CAS  Google Scholar 

  12. Li, W., Nicol, F. & Szoka, F. C. Jr . GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev. 56, 967–985 (2004).

    Article  CAS  Google Scholar 

  13. Kobayashi, S. et al. Cytosolic targeting of macromolecules using a pH-dependent fusogenic peptide in combination with cationic liposomes. Bioconjug. Chem. 20, 953–959 (2009).

    Article  CAS  Google Scholar 

  14. Kyriakides, T. R. et al. pH-sensitive polymers that enhance intracellular drug delivery in vivo. J. Control. Release 78, 295–303 (2002).

    Article  CAS  Google Scholar 

  15. Shi, G., Guo, W., Stephenson, S. M. & Lee, R. J. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release 80, 309–319 (2002).

    Article  CAS  Google Scholar 

  16. Meyer, M., Philipp, A., Oskuee, R., Schmidt, C. & Wagner, E. Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J. Am. Chem. Soc. 130, 3272–3273 (2008).

    Article  CAS  Google Scholar 

  17. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  Google Scholar 

  18. Li, M. et al. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. J. Am. Chem. Soc. 137, 14084–14093 (2015).

    Article  CAS  Google Scholar 

  19. Polka, J. K. & Silver, P. A. A tunable protein piston that breaks membranes to release encapsulated cargo. ACS Synth. Biol. 5, 303–311 (2016).

    Article  CAS  Google Scholar 

  20. Motion, J., Nguyen, J. & Szoka, F. C. Phosphatase-triggered fusogenic liposomes for cytoplasmic delivery of cell-impermeable compounds. Angew. Chem. Int. Ed. 51, 9047–9051 (2012).

    Article  CAS  Google Scholar 

  21. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55–70 (1999).

    Article  CAS  Google Scholar 

  22. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  23. Gajski, G. & Garaj-Vrhovac, V. Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 36, 697–705 (2013).

    Article  CAS  Google Scholar 

  24. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  Google Scholar 

  25. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

    Article  CAS  Google Scholar 

  26. Slater, T. F., Sawyer, B. & Straeuli, U. Studies on succinate-tetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77, 383–393 (1963).

    Article  CAS  Google Scholar 

  27. Yan, L. & Adams, M. E. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J. Biol. Chem. 273, 2059–2066 (1998).

    Article  CAS  Google Scholar 

  28. Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 6th edn (W. H. Freeman, 2013).

    Google Scholar 

  29. Stirpe, F. et al. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem. J. 216, 617–625 (1983).

    Article  CAS  Google Scholar 

  30. Polito, L., Bortolotti, M., Mercatelli, D., Battelli, M. G. & Bolognesi, A. Saporin-S6: a useful tool in cancer therapy. Toxins (Basel) 5, 1698–1722 (2013).

    Article  Google Scholar 

  31. Araki, K., Araki, M., Miyazaki, J. & Vassalli, P. Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl Acad. Sci. USA 92, 160–164 (1995).

    Article  CAS  Google Scholar 

  32. Armstrong, J. K., Wenby, R. B., Meiselman, H. J. & Fisher, T. C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87, 4259–4270 (2004).

    Article  CAS  Google Scholar 

  33. Liu, Y., Fisher, D. A. & Storm, D. R. Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J. Neurosci. 14, 5807–5817 (1994).

    Article  CAS  Google Scholar 

  34. Tai, S. K. et al. Differential expression of metallothionein 1 and 2 isoforms in breast cancer lines with different invasive potential: identification of a novel nonsilent metallothionein-1H mutant variant. Am. J. Pathol. 163, 2009–2019 (2003).

    Article  CAS  Google Scholar 

  35. Nakase, I. & Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep. 5, 10112 (2015).

    Article  Google Scholar 

  36. Ellens, H., Bentz, J. & Szoka, F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23, 1532–1538 (1984).

    Article  CAS  Google Scholar 

  37. Madani, F . et al. Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochim. Biophys. Acta 1828, 1198–1204 (2013).

    Article  CAS  Google Scholar 

  38. Woody, R. W. Circular dichroism. Methods Enzymol. 246, 34–71 (1995).

    Article  CAS  Google Scholar 

  39. Nakase, I. et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022 (2004).

    Article  CAS  Google Scholar 

  40. Clarke, B. L. & Weigel, P. H. Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. ATP depletion blocks receptor recycling but not a single round of endocytosis. J. Biol. Chem. 260, 128–133 (1985).

    CAS  PubMed  Google Scholar 

  41. Falcone, S. et al. Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J. Cell. Sci. 119, 4758–4769 (2006).

    Article  CAS  Google Scholar 

  42. Mercer, J. & Helenius, A. Virus entry by macropinocytosis. Nat. Cell Biol. 11, 510–520 (2009).

    Article  CAS  Google Scholar 

  43. Nakase, I., Takeuchi, T., Tanaka, G. & Futaki, S. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv. Drug Deliv. Rev. 60, 598–607 (2008).

    Article  CAS  Google Scholar 

  44. Gibson, A. E., Noel, R. J., Herlihy, J. T. & Ward, W. F. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am. J. Physiol. 257, C182–C184 (1989).

    Article  CAS  Google Scholar 

  45. Thomas, S. et al. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Lett. 325, 63–71 (2012).

    Article  CAS  Google Scholar 

  46. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell. 10, 839–850 (2006).

    Article  CAS  Google Scholar 

  47. Lopez-Mirabal, H. R. & Winther, J. R. Redox characteristics of the eukaryotic cytosol. Biochim. Biophys. Acta 1783, 629–640 (2008).

    Article  CAS  Google Scholar 

  48. Goto, Y. & Hamaguchi, K. The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain. J. Biochem. 86, 1433–1441 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant nos JP15H02497 and JP16H01145. This work was also supported by the Collaborative Research Program of the Institute for Chemical Research, Kyoto University. M.A. and Y.K. are grateful for the JSPS Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

M.A. designed and executed most of the experiments. H.-H.Y., F.M. and A.G. were involved in the peptide design, evaluation of the endosomal escape and discussion of the peptide–membrane interaction. Y.K. and I.N. were involved in the experiments using saporin and exosomes, respectively. T.T.-N. was involved in the statistical analysis of the experimental data. K.S. was involved in the peptide synthesis and the biophysical studies. S.F. directed the project, designed the experiments, analysed the data and wrote the paper with T.T.

Corresponding author

Correspondence to Shiroh Futaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akishiba, M., Takeuchi, T., Kawaguchi, Y. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nature Chem 9, 751–761 (2017). https://doi.org/10.1038/nchem.2779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2779

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research