Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Salinomycin kills cancer stem cells by sequestering iron in lysosomes


Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sal and AM5 alter the maintenance of CSCs independently of sodium transport.
Figure 2: Sal and AM5 sequester iron in lysosomes and trigger ferritin degradation in response to iron depletion.
Figure 3: Accumulation of iron in lysosomes promotes ROS production and lysosomal dysfunction.
Figure 4: Iron is involved in the maintenance of CSCs.


  1. 1

    Nieto, M. N., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  Google Scholar 

  2. 2

    Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Pattabiraman, D. R. & Weinberg, R. A. Tackling the cancer stem cells–what challenges do they pose? Nature Rev. Drug Discov. 13, 497–512 (2014).

    CAS  Google Scholar 

  4. 4

    Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    CAS  PubMed  Google Scholar 

  5. 5

    Quintana, E. et al. Efficient tumour formation by single melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Morel, A.-P. et al. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS ONE 3, e2888 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Germain, A. R. et al. Identification of a selective small molecule inhibitor of breast cancer stem cells. Bioorg. Med. Chem. Lett. 22, 3571–3574 (2012).

    CAS  PubMed  Google Scholar 

  9. 9

    Hartwell, K. A. et al. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nat. Chem. Biol. 9, 840–848 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Paulus, E. F., Kurz, M., Matter, H. & Vértesy, L. Solid-state and solution structure of the salinomycin-sodium complex: stabilization of different conformers for an ionophore in different environments. J. Am. Chem. Soc. 120, 8209–8221 (1998).

    CAS  Google Scholar 

  11. 11

    Lu, D. et al. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc. Natl Acad. Sci. USA 108, 13253–13257 (2011).

    CAS  PubMed  Google Scholar 

  12. 12

    Yue, W. et al. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 9, 714–729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Naujokat, C. & Steinhart, R. Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol. 2012, 950658 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Huczyński, A. et al. Antiproliferative activity of salinomycin and its derivatives. Bioorg. Med. Chem. Lett. 22, 7146–7150 (2012).

    PubMed  Google Scholar 

  15. 15

    Borgström, B. et al. Synthetic modification of salinomycin: selective O-acylation and biological evaluation. Chem. Commun. 49, 9944–9946 (2013).

    Google Scholar 

  16. 16

    Huang, X. et al. Semisynthesis of SY-1 for investigation of breast cancer stem cell selectivity of C-ring-modified salinomycin analogues. ACS Chem. Biol. 9, 1587–1594 (2014).

    CAS  PubMed  Google Scholar 

  17. 17

    Borgström, B., Huang, X., Chygorin, E., Oredsson, S. & Strand, D. Salinomycin hydroxamic acids: synthesis, structure, and biological activity of polyether ionophore hybrids. ACS Chem. Med. Lett. 7, 635–640 (2016).

    Google Scholar 

  18. 18

    Shi, Q. et al. Discovery of a 19F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells. Chem. Commun. 52, 5136–5139 (2016).

    CAS  Google Scholar 

  19. 19

    Borgström, B., Huang, X., Hegardt, C., Oredsson, S . & Strand, D. Structure-activity relationships in salinomycin: cytotoxicity and phenotype selectivity of semi-synthetic derivatives. Chem. Eur. J. 23, 2077–2083 (2017).

    PubMed  Google Scholar 

  20. 20

    Nishi, M. et al. Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene 33, 643–652 (2014).

    CAS  PubMed  Google Scholar 

  21. 21

    Minta, A. & Tsien, R. Y. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449–19457 (1989).

    CAS  PubMed  Google Scholar 

  22. 22

    Charafe-Jauffret, E. et al. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res. 73, 7290–7300 (2013).

    CAS  PubMed  Google Scholar 

  23. 23

    Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Larrieu, D., Britton, S., Demir, M., Rodriguez, R. & Jackson, S. P. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344, 527–532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Abell, N. S., Mercado, M., Cañeque, T., Rodriguez, R. & Xhemalce, B. Click quantitative mass spectrometry identifies PIWIL3 as a mechanistic target of RNA interference activator enoxacin in cancer cells. J. Am. Chem. Soc. 139, 1400–1403 (2017).

    CAS  PubMed  Google Scholar 

  26. 26

    Cañeque, T. et al. Synthesis of marmycin A and investigation into its cellular activity. Nat. Chem. 7, 744–751 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705–5724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Asano, T. et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell Biol. 10, 2040–2052 (2011).

    Google Scholar 

  29. 29

    Hirayama, T., Okuda, K. & Nagasawa, H. A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem. Sci. 4, 1250–1256 (2013).

    CAS  Google Scholar 

  30. 30

    Li, T. et al. Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy 9, 1057–1068 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014).

    CAS  PubMed  Google Scholar 

  32. 32

    Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Aits, S. & Jäättelä, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Galluzzi, L., Bravo-San Pedro, J. M. & Kroemer, G. Organelle-specific initiation of cell death. Nat. Cell. Biol. 16, 728–736 (2014).

    CAS  PubMed  Google Scholar 

  35. 35

    Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Conrad, M., Angeli, J. P. F., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 15, 348–366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Yang, W. S. & Stockwell, B. R. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26, 165–176 (2016).

    CAS  PubMed  Google Scholar 

  39. 39

    Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73, 2195–2209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nature Rev. Clin. Oncol. 12, 445–464 (2015).

    CAS  Google Scholar 

  42. 42

    West, N. R., Murray, J. I. & Watson, P. H. Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer. Oncogene 33, 1485–1494 (2014).

    CAS  PubMed  Google Scholar 

  43. 43

    Schonberg, D. L. et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28, 441–455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Pinnix, Z. K. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2, 43ra56 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Yamane, K. et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801–812 (2007).

    CAS  PubMed  Google Scholar 

  46. 46

    Yamamoto, S. et al. JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell 25, 762–777 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Tsai, Y.-P. et al. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 15, 513 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Hu, X. et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522 (2014).

    CAS  PubMed  Google Scholar 

Download references


We thank the CNRS, INSERM and SATT IDF Innov for generous funding. Research in the R.R. laboratory is supported by the European Research Council (grant number 647973), Fondation pour la Recherche Médicale (grant reference AJE20141031486), Emergence Ville de Paris and Ligue Contre le Cancer. A.Ha. is funded by the Fondation de France. We acknowledge the PICT-IBiSA@Pasteur Imaging Facility of Institut Curie, member of the France-BioImaging national research infrastructure. We thank P. Le Bacon for assistance with high-resolution microscopy, J.-F. Gallard, N. Birlirakis and C. Gaillet for assistance with NMR spectroscopy and J. Poupon for electrothermal atomic absorption spectrometry experiments. We thank A. Puisieux for providing us with HMLER cells and V. Mitz for mammary tissues obtained from reduction mammoplasty.

Author information




R.R. conceptualized the study and designed ironomycin. R.R., T.T.M., M.M., A.Ha. and P.C. designed the experiments and analysed the data. T.T.M., A.Hi., A.Ha. and M.M. performed the experiments unless stated otherwise. A.Hi. and T.C. synthesized Sal derivatives and performed NMR experiments. J.W., O.C., C.G., D.B. and E.C.-J. provided PDX data. A.Ha., C.L. and A.D. provided MCF-7 tumour data. S.M. and V.A. provided assistance with cell imaging. A.R. provided iCSCL-10A2 cells. R.R. wrote the manuscript with contributions from T.C., S.M., A.Hi., A.Ha. and M.M.

Corresponding authors

Correspondence to Maryam Mehrpour or Raphaël Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 34921 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mai, T., Hamaï, A., Hienzsch, A. et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chem 9, 1025–1033 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing