Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

This article has been updated

Abstract

Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si–O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g−1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthesis of anionic silicate organic framework by reversible Si–O chemistry.
Figure 2: Physical characterization of the hexacoordinate state of silicon within the network and of the crystallinity of SiCOF.
Figure 3: Gas sorption analysis shows the high permanent microporosity of SiCOF upon guest removal.

Change history

  • 09 May 2017

    In the version of this Article originally published, the space group was incorrectly formatted in the third paragraph of page 4, and in the caption of Figure 2. Furthermore, the first sentence of the main text contained typographical errors and has been corrected to read: "In silicate materials, silicon sites almost exclusively adopt a tetrahedral coordination with respect to oxygen and reports of silicon containing hypercoordinate, that is, penta- or hexacoordinate silicon are very rare." Finally, the crystallographic data for the silicate organic framework was not present in the Supplementary Information when this Article was pushed live. These corrections have been made in all versions of the Article.

References

  1. 1

    Liebau, F. Structural Chemistry of Silicates (Springer, 1985).

    Book  Google Scholar 

  2. 2

    Wagler, J., Böhme, U. & Kroke, E. in Functional Molecular Silicon Compounds I (ed. Scheschkewitz, D.) Structure and Bonding Vol. 155, 29–105 (Springer, 2014).

    Google Scholar 

  3. 3

    Rosenheim, A., Raibmann, B. & Schendel, G. Über innerkomplexe brenzcatechinate vierwertiger elemente. Z. Anorg. Allg. Chem. 196, 160–176 (1931).

    CAS  Article  Google Scholar 

  4. 4

    Flynn, J. J. & Boer, F. P. Structural studies of hexacoordinate silicon. Tris(o-phenylenedioxy) siliconate. J. Am. Chem. Soc. 91, 5756–5761 (1969).

    CAS  Article  Google Scholar 

  5. 5

    Laine, R. M. et al. Synthesis of pentacoordinate silicon complexes from SiO2 . Nature 353, 642–644 (1991).

    CAS  Article  Google Scholar 

  6. 6

    Herreros, B., Carr, S. W. & Klinowski, J. 5-coordinate Si compounds as intermediates in the synthesis of silicates in nonaqueous media. Science 263, 1585–1587 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Kinrade, S. D. et al. Stable five- and six-coordinated silicate anions in aqueous solution. Science 285, 1542–1545 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Schmiederer, T. et al. The E. coli siderophores enterobactin and salmochelin form six-coordinate silicon complexes at physiological pH. Angew. Chem. Int. Ed. 50, 4230–4233 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  11. 11

    El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Blake, A. J. et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord. Chem. Rev. 183, 117–138 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Shea, K. J., Loy, D. A. & Small, J. H. Condensed aryl-bridged siliconates. New ladder and network ionomers. Chem. Mater. 4, 255–258 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Hahn, F. E., Keck, M. & Raymond, K. N. Catecholate complexes of silicon: synthesis and molecular and crystal structures of [Si(cat)2]·2THF and Li2[Si(cat)3]·3.5dme (cat = catecholate dianion). Inorg. Chem. 34, 1402–1407 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Cella, J. A., Cargioli, J. D. & Williams, E. A. 29Si NMR of five- and six-coordinate organosilicon complexes. J. Organomet. Chem. 186, 13–17 (1980).

    CAS  Article  Google Scholar 

  18. 18

    O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Materials Studio Modelling v. 5.0 (Accelrys, 2009).

  20. 20

    Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    CAS  Article  Google Scholar 

  21. 21

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154119 (2010).

    Article  Google Scholar 

  22. 22

    Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic frameworks. Chem. Eur. J. 17, 2388–2392 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Ascherl, L. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 8, 310–316 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Warren, B. E. X-Ray Diffraction (Dover, 1969).

    Google Scholar 

  26. 26

    Prill, D., Juhas, P., Schmidt, M. U. & Billinge, S. J. L. Modelling pair distribution functions (PDFs) of organic compounds: describing both intra- and intermolecular correlation functions in calculated PDFs. J. Appl. Cryst. 48, 171–178 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Prill, D., Juhas, P., Billinge, S. J. L. & Schmidt, M. U. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function. Acta Cryst. A 72, 62–72 (2016).

    CAS  Article  Google Scholar 

  28. 28

    Hmadeh, M. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 24, 3511–3513 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    CAS  Article  Google Scholar 

  30. 30

    Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. S. W. Adsorption by Powders and Porous Solids 2nd edn (Academic, 2014).

    Google Scholar 

Download references

Acknowledgements

We thank the European Research Council (ERC) for financial support within the project ORGZEO (Grant Number:278593). Support from the German Science Foundation within the Cluster of Excellence UniCat-Unifying concepts in catalysis is further acknowledged. M.J.B. thanks the Czech Science Foundation (GA CR) for junior grant funding (CAMs: 16-21151Y) and the European Research Council (ERC) for funding under the Starting Grant scheme (BEGMAT: 678462). M.J.B. further acknowledges the Charles University Centre of Advanced Materials (CUCAM) (OP VVV Excellent Research Teams, project number CZ.02.1.01/0.0/0.0/15_003/0000417). We thank Professor Holger Dobbek for his precious help, Professor Matthias Driess and Dr Matthias Thommes for fruitful discussions, and Mrs. Christina Eichenauer, Mrs. Maria Unterweger and Mr. Matthias Trunk for their assistance.

Author information

Affiliations

Authors

Contributions

J.R. and A.Th. conceived and designed the experiments. J.R. performed the experiments and carried out the structural characterizations. P.F. and A.Tr. carried out the DFT calculations. D.P. and M.U.S. performed the analysis of the pair-distribution function. A.N.F. collected the synchrotron X-ray diffraction data. M.J.B. refined the high-resolution PXRD data. All the authors interpreted the structures and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Jérôme Roeser or Arne Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10680 kb)

Supplementary information

Crystallographic data generated for the SiCOF material (CIF 1 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roeser, J., Prill, D., Bojdys, M. et al. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres. Nature Chem 9, 977–982 (2017). https://doi.org/10.1038/nchem.2771

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing