Abstract
During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction–diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose ‘phenotype’ can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction–diffusion models and fabricate soft materials following an autonomous developmental programme.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Programmable synthetic cell networks regulated by tuneable reaction rates
Nature Communications Open Access 06 July 2022
-
Programmable pattern formation in cellular systems with local signaling
Communications Physics Open Access 17 June 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Wolpert, L. & Tickle, C. Principles of Development (Oxford Univ. Press, 2011).
Tompkins, N. et al. Testing Turing's theory of morphogenesis in chemical cells. Proc. Natl Acad. Sci. USA 111, 4397–4402 (2014).
Yoshida, R., Takahashi, T., Yamaguchi, T. & Ichijo, H. Self-oscillating gel. J. Am. Chem. Soc. 118, 5134–5135 (1996).
Inostroza-Brito, K. E. et al. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system. Nat. Chem. 7, 897–904 (2015).
Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237, 37–72 (1952).
Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).
Green, J. B. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211 (2015).
Rulands, S., Klünder, B. & Frey, E. Stability of localized wave fronts in bistable systems. Phys. Rev. Lett. 110, 038102 (2013).
Quiñinao, C., Prochiantz, A. & Touboul, J. Local homeoprotein diffusion can stabilize boundaries generated by graded positional cues. Development 142, 1860–1868 (2015).
Sheth, R. et al. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338, 1476–1480 (2012).
Economou, A. D. et al. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat. Genet. 44, 348–351 (2012).
Johnston, D. S. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).
Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142, 3996–4009 (2015).
Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990).
Isalan, M., Lemerle, C. & Serrano, L. Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biol. 3, 488–496 (2005).
Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008).
Padirac, A., Fujii, T., Estevez-Torres, A. & Rondelez, Y. Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135, 14586–14592 (2013).
Chirieleison, S. M., Allen, P. B., Simpson, Z. B., Ellington, A. D. & Chen, X. Pattern transformation with DNA circuits. Nat. Chem. 5, 1000–1005 (2013).
Semenov, S. N., Markvoort, A. J., de Greef, T. F. A. & Huck, W. T. S. Threshold sensing through a synthetic enzymatic reaction-diffusion network. Angew. Chem. Int. Ed. 53, 8066–8069 (2014).
Tayar, A. M., Karzbrun, E., Noireaux, V. & Bar-Ziv, R. H. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells. Nat. Phys. 11, 1037–1041 (2015).
Lewis, J., Slack, J. M. W. & Wolpert, L. Thresholds in development. J. Theor. Biol. 65, 579–590 (1977).
François, P., Hakim, V. & Siggia, E. D. Deriving structure from evolution: metazoan segmentation. Mol. Syst. Biol. 3, 154 (2007).
Lopes, F. J., Vieira, F. M., Holloway, D. M., Bisch, P. M. & Spirov, A. V. Spatial bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput. Biol. 4, e1000184 (2008).
Scalise, D. & Schulman, R. Designing modular reaction-diffusion programs for complex pattern formation. Technology 2, 55–66 (2014).
Zadorin, A. S., Rondelez, Y., Galas, J.-C. & Estevez-Torres, A. Synthesis of programmable reaction-diffusion fronts using DNA catalyzers. Phys. Rev. Lett. 114, 068301 (2015).
Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).
Fujii, T. & Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 7, 27–34 (2013).
Padirac, A., Fujii, T. & Rondelez, Y. Bottom-up construction of in vitro switchable memories. Proc. Natl Acad. Sci. USA 109, E3212–E3220 (2012).
Zambrano, A., Zadorin, A. S., Rondelez, Y., Estevez-Torres, A. & Galas, J. C. Pursuit-and-evasion reaction-diffusion waves in microreactors with tailored geometry. J. Phys. Chem. B 119, 5349–5355 (2015).
Montagne, K., Gines, G., Fujii, T. & Rondelez, Y. Boosting functionality of synthetic DNA circuits with tailored deactivation. Nat. Commun. 7, 13474 (2016).
Manu et al. Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput. Biol. 5, e1000303 (2009).
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).
Howard, J., Grill, S. W. & Bois, J. S. Turing's next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 392–398 (2011).
Vanag, V. K. & Epstein, I. R. Pattern formation mechanisms in reaction–diffusion systems. Int. J. Dev. Biol. 53, 673–681 (2009).
van Roekel, H. W. H. et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem. Soc. Rev. 44, 7465–7483 (2015).
Rotermund, H. H., Jakubith, S., von Oertzen, A. & Ertl, G. Solitons in a surface reaction. Phys. Rev. Lett. 66, 3083–3086 (1991).
Descalzi, O., Akhmediev, N. & Brand, H. R. Exploding dissipative solitons in reaction-diffusion systems. Phys. Rev. E 88, 042911 (2013).
Grzybowski, B. A., Bishop, K. J. M., Campbell, C. J., Fialkowski, M. & Smoukov, S. K. Micro- and nanotechnology via reaction-diffusion. Soft Matter 1, 114–128 (2005).
Nakouzi, E. & Steinbock, O. Self-organization in precipitation reactions far from the equilibrium. Sci. Adv. 2, e1601144 (2016).
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Franco, E. et al. Timing molecular motion and production with a synthetic transcriptional clock. Proc. Natl Acad. Sci. USA 108, E784–E793 (2011).
Lee, J. B. et al. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotech. 7, 816–820 (2012).
Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).
Patwa, A., Gissot, A., Bestel, I. & Barthelemy, P. Hybrid lipid oligonucleotide conjugates: synthesis, self-assemblies and biomedical applications. Chem. Soc. Rev. 40, 5844–5854 (2011).
Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).
Wartlick, O., Kicheva, A. & González-Gaitán, M. Morphogen gradient formation. Cold Spring Harb. Persp. Biol. 1, a001255 (2009).
Gines, G. et al. Microscopic agents programmed by DNA circuits. Nat. Nanotech. 12, 351–359 (2017).
Giurumescu, C. A. & Asthagiri, A. R. in Systems Biomedicine (eds Liu, E. T. & Lauffenburger, D. A.) Ch. 14, 329–350 (Academic, 2010).
Shvartsman, S. Y. & Baker, R. E. Mathematical models of morphogen gradients and their effects on gene expression. Wiley Interdiscip. Rev. Dev. Biol. 1, 715–730 (2012).
Wakamatsu, T. et al. Structure of RecJ exonuclease defines its specificity for single-stranded DNA. J. Biol. Chem. 285, 9762–9769 (2010).
Leunissen, M. E. et al. Towards self-replicating materials of DNA-functionalized colloids. Soft Matter 5, 2422 (2009).
Acknowledgements
We thank E. Frey for insightful discussions, A. Vlandas for help with gradient generation and B. Caller and D. Woods for comments on the text. Supported by European commission FET-Open (Ribonets, 323987), by ANR jeunes chercheurs programme (Dynano), by C'nano Ile-de-France (DNA2PROT) and by Ville de Paris Emergences programme (Morphoart).
Author information
Authors and Affiliations
Contributions
A.S.Z., J.-C.G. and A.E.-T. performed most experiments and analysed the data. Y.R. and G.G. designed the network in Fig. 1 and J.-C.G. and A.E.-T. designed the networks in Figs 3 and 4. A.Z. and V.D. set up the bead experiments. G.U. performed critical control experiments. All the authors discussed the results. J.-C.G., A.S.Z., Y.R. and A.E.-T. designed research and J.-C.G. and A.E.-T. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 17017 kb)
Supplementary movie
Supplementary movie 1 (AVI 8534 kb)
Supplementary movie
Supplementary movie 2 (AVI 1711 kb)
Rights and permissions
About this article
Cite this article
Zadorin, A., Rondelez, Y., Gines, G. et al. Synthesis and materialization of a reaction–diffusion French flag pattern. Nature Chem 9, 990–996 (2017). https://doi.org/10.1038/nchem.2770
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2770
This article is cited by
-
Dissipative DNA nanotechnology
Nature Chemistry (2022)
-
Nonlinear decision-making with enzymatic neural networks
Nature (2022)
-
Programmable synthetic cell networks regulated by tuneable reaction rates
Nature Communications (2022)
-
Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks
Nature Chemistry (2022)
-
Toggling Between Two Limit Cycles in a Molecular Ecosystem
New Generation Computing (2022)