Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions

Subjects

Abstract

Actinyl species, [AnO2]2+, are well-known derivatives of the f-block because of their natural occurrence and essential roles in the nuclear fuel cycle. Along with their nitrogen analogues, [An(NR)2]2+, actinyls are characterized by their two strong trans-An–element multiple bonds, a consequence of the inverse trans influence. We report that these robust bonds can be weakened significantly by increasing the number of multiple bonds to uranium, as demonstrated by a family of uranium(VI) dianions bearing four U–N multiple bonds, [M]2[U(NR)4] (M = Li, Na, K, Rb, Cs). Their geometry is dictated by cation coordination and sterics rather than by electronic factors. Multiple bond weakening by the addition of strong π donors has the potential for applications in the processing of high-valent actinyls, commonly found in environmental pollutants and spent nuclear fuels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the progression of decreasing bond order in uranium imido species as additional imido substituents are added.
Figure 2: Chemical equation that describes the synthetic procedures for the generation of 2-Li to 2-Cs from U(NDIPP)3(THF)3.
Figure 3: Molecular structures for the tetrakis(imido)uranate(VI) dianions.
Figure 4: DFT calculations for tetrakis(imido)uranate(VI) dianions.

Similar content being viewed by others

References

  1. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007).

    Article  CAS  Google Scholar 

  2. Kiernicki, J. J., Cladis, D. P., Fanwick, P. E., Zeller, M. & Bart, S. C. Synthesis, characterization, and stoichiometric U=O bond scission in uranyl species supported by pyridine(diimine) ligand radicals. J. Am. Chem. Soc. 137, 11115–11125 (2015).

    Article  CAS  Google Scholar 

  3. Wilkerson, M. P., Burns, C. J., Morris, D. E., Paine, R. T. & Scott, B. L. Steric control of substituted phenoxide ligands on product structures of uranyl aryloxide complexes. Inorg. Chem. 41, 3110–3120 (2002).

    Article  CAS  Google Scholar 

  4. Pedrick, E. A., Schultz, J. W., Wu, G., Mirica, L. M. & Hayton, T. W. Perturbation of the O–U–O angle in uranyl by coordination to a 12-membered macrocycle. Inorg. Chem. 55, 5693–5701 (2016).

    Article  CAS  Google Scholar 

  5. Burns, P. C. & Klingensmith, A. L. Uranium mineralogy and neptunium mobility. Elements 2, 351–356 (2007).

    Article  Google Scholar 

  6. Dinocourt, C., Legrand, M., Dublineau, I. & Lestaevel, P. The neurotoxicology of uranium. Toxicology 337, 58–71 (2015).

    Article  CAS  Google Scholar 

  7. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    Article  CAS  Google Scholar 

  8. Kaltsoyannis, N. Computational study of analogues of the uranyl ion containing the −NUN− unit: density functional theory calculations on UO22+, UON+, UN2, UO(NPH3)3+, U(NPH3)24+, [UCl4{NPR3}2] (R = H, Me), and [UOCl4{NP(C6H5)3}]. Inorg. Chem. 39, 6009–6017 (2000).

    Article  CAS  Google Scholar 

  9. Hayton, T. W. Metal–ligand multiple bonding in uranium: structure and reactivity. Dalton Trans. 39, 1145–1158 (2010).

    Article  CAS  Google Scholar 

  10. Fortier, S. & Hayton, T. W. Oxo ligand functionalization in the uranyl ion (UO22+). Coord. Chem. Rev. 254, 197–214 (2010).

    Article  CAS  Google Scholar 

  11. Arnold, P. L., Patel, D., Wilson, C. & Love, J. B. Reduction and selective oxo group silylation of the uranyl dication. Nature 451, 315–317 (2008).

    Article  CAS  Google Scholar 

  12. Schnaars, D. D., Wu, G. & Hayton, T. W. Borane-mediated silylation of a metal-oxo ligand. Inorg. Chem. 50, 4695–4697 (2011).

    Article  CAS  Google Scholar 

  13. McGlynn, S. P., Smith, J. K. & Neely, W. C. Electronic structure, spectra, and magnetic properties of oxycations. III. Ligation effects on the infrared spectrum of the uranyl ion. J. Chem. Phys. 35, 105–116 (1961).

    Article  CAS  Google Scholar 

  14. Allen, P. G. et al. Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of [C(NH2)3]6[(UO2)3(CO3)6]·6.5H2O. Inorg. Chem. 34, 4797–4807 (1995).

    Article  CAS  Google Scholar 

  15. Ingram, K. I. M., Haller, L. J. L. & Kaltsoyannis, N. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n]2–n (n + m = 5). Dalton Trans. 2403–2414 (2006).

  16. Clark, D. L. et al. Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg. Chem. 38, 1456–1466 (1999).

    Article  CAS  Google Scholar 

  17. Anderson, N. H. et al. Harnessing redox activity for the formation of uranium tris(imido) compounds. Nat. Chem. 6, 919–926 (2014).

    Article  CAS  Google Scholar 

  18. Anderson, N. H. et al. Investigation of uranium tris(imido) complexes: synthesis, characterization, and reduction chemistry of [U(NDIPP)3(THF)3]. Angew. Chem. Int. Ed. 54, 9386–9389 (2015).

    Article  CAS  Google Scholar 

  19. Danopoulos, A. A., Wilkinson, G., Hussain, B. & Hursthouse, M. B. Imido analogues of the tungstate(VI) and perrhenate(VII) ions. X-ray crystal structures of Li2W(NBut)4 and Li(tmed)Re(NBut)4 . J. Chem. Soc. Chem. Commun. 896–897 (1989).

  20. Danopoulos, A. A., Wilkinson, G., Sweet, T. K. N. & Hursthouse, M. B. Non-oxo chemistry of manganese in high oxidation states. Part 1. Mononuclear tert-butylimido compounds of manganese-(VII) and -(VI). Dalton Trans. 1037–1049 (1994).

  21. Bell, N. L., Maron, L. & Arnold, P. L. Thorium mono- and bis(imido) complexes made by reprotonation of cyclo-metalated amides. J. Am. Chem. Soc. 137, 10492–10495 (2015).

    Article  CAS  Google Scholar 

  22. Benson, M. T., Bryan, J. C., Burrell, A. K. & Cundari, T. R. Bonding and structure of heavily π loaded complexes. Inorg. Chem. 34, 2348–2355 (1995).

    Article  CAS  Google Scholar 

  23. Russo, M. R., Kaltsoyannis, N. & Sella, A. Are metal alkoxides linear owing to electrostatic repulsion? Chem. Commun. 2458–2459 (2002).

  24. Arney, D. S. J., Burns, C. J. & Smith, D. C. Synthesis and structure of the first uranium(VI) organometallic complex. J. Am. Chem. Soc. 114, 10068–10069 (1992).

    Article  CAS  Google Scholar 

  25. Burns, C. J., Smith, W. H., Huffman, J. C. & Sattelberger, A. P. Uranium(VI) organoimido complexes. J. Am. Chem. Soc. 112, 3237–3239 (1990).

    Article  CAS  Google Scholar 

  26. Hayton, T. W., Boncella, J. M., Scott, B. L., Batista, E. R. & Hay, P. J. Synthesis and reactivity of the imido analogues of the uranyl ion. J. Am. Chem. Soc. 128, 10549–10559 (2006).

    Article  CAS  Google Scholar 

  27. Katz, J., Morss, L. R. & Seaborg, G. T. The Chemistry of the Actinide Elements (Chapman Hall, 1980).

  28. van Lenthe, E., Snijders, J. G. & Baerends, E. J. The zero-order regular approximation for relativistic effects: the effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505–6516 (1996).

    Article  CAS  Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997).

    Article  CAS  Google Scholar 

  31. Laidig, K. E. Atomic origins of molecular polarizabilities. Can. J. Chem. 74, 1131–1138 (1996).

    Article  CAS  Google Scholar 

  32. Bader, R. Atoms Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

  33. Roos, B. O., Taylor, P. R. & Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).

    Article  CAS  Google Scholar 

  34. Bolvin, H., Wahlgren, U., Gropen, O. & Marsden, C. Ab initio study of the two iso-electronic molecules NpO4 and UO42−. J. Phys. Chem. A 105, 10570–10576 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) through Grants DE-SC0008479 (S.C.B.) and USDOE/DESC002183 (L.G., J.X. and D.R.). L.G. used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US DOE under contract no. DE-AC02-05CH11231. The Prospector X-ray diffractometer was funded by NSF Grant DMR 1337296. We thank S. Odoh for useful discussion.

Author information

Authors and Affiliations

Authors

Contributions

N.H.A. and S.C.B. conceived and designed the experiments. N.H.A. synthesized all the compounds. J.X., D.R. and L.G. performed the computations. N.H.A. and M.Z. performed the crystallographic analysis. N.H.A., J.X. and S.C.B. co-wrote the manuscript.

Corresponding author

Correspondence to Suzanne C. Bart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5278 kb)

Supplementary information

Crystallographic data for compound 2-Na (CIF 746 kb)

Supplementary information

Crystallographic data for compound 2-Rb (CIF 571 kb)

Supplementary information

Crystallographic data for compound 2-Cs (CIF 1111 kb)

Supplementary information

Crystallographic data for compound 2-K(crypt) (CIF 1308 kb)

Supplementary information

Crystallographic data for compound 2-K (CIF 4986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, N., Xie, J., Ray, D. et al. Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions. Nature Chem 9, 850–855 (2017). https://doi.org/10.1038/nchem.2767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing