Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids

Abstract

Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid–solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Available void space in carbon-based molecular crystal structures.
Figure 2: Characterization data for K2Pentacene.
Figure 3: Crystal structure of K2Pentacene.
Figure 4: Characterization data for K2Picene.
Figure 5: Crystal structure of K2Picene.
Figure 6: Local structure in K2Picene.

References

  1. 1

    Fleming, R. M. et al. Relation of structure and superconducting transition temperatures in A3C60 . Nature 352, 787–788 (1991).

  2. 2

    Hebard, A. F. et al. Superconductivity at 18 K in potassium doped C60 . Nature 350, 600–601 (1991).

  3. 3

    Tanigaki, K. et al. Superconductivity at 33 K in CsxRbyC60 . Nature 352, 222–223 (1991).

  4. 4

    Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004).

  5. 5

    Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nat. Phys. 1, 39–41 (2005).

  6. 6

    Ganin, A. Y. et al. Bulk superconductivity at 38 K in a molecular system. Nat. Mater. 7, 367–371 (2008).

  7. 7

    Stephens, P. W. et al. Structure of single phase superconducting K3C60 . Nature 351, 632–634 (1991).

  8. 8

    Mitsuhashi, R. et al. Superconductivity in alkali-metal-doped picene. Nature 464, 76–79 (2010).

  9. 9

    Wang, X. F. et al. Superconductivity at 5 K in alkali-metal-doped phenanthrene. Nat. Commun. 2, 507 (2011).

  10. 10

    Kubozono, Y. et al. Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors. Phys. Chem. Chem. Phys. 13, 16476–16493 (2011).

  11. 11

    Xue, M. et al. Superconductivity above 30 K in alkali-metal-doped hydrocarbon. Sci. Rep. 2, 389 (2012).

  12. 12

    Trotter, J. Crystal and molecular structure of phenanthrene. Acta Crystallogr. 16, 605–608 (1963).

  13. 13

    De, A., Ghosh, R., Roychowdhury, S. & Roychowdhury, P. Structural analysis of picene, C22H14 . Acta Crystallogr. C 41, 907–909 (1985).

  14. 14

    Kaefer, D., El Helou, M., Gemel, C. & Witte, G. Packing of planar organic molecules: interplay of van der Waals and electrostatic interaction. Cryst. Growth Des. 8, 3053–3057 (2008).

  15. 15

    Burgi, H. B., Restori, R. & Schwarzenbach, D. Structure of C60—partial orientational order in the room-temperature modification of C60 . Acta Crystallogr. B 49, 832–838 (1993).

  16. 16

    Desiraju, G. R. & Gavezzotti, A. Crystal structures of polynuclear aromatic hydrocarbons—classification, rationalization and prediction from molecular structure. Acta Crystallogr. B 45, 473–482 (1989).

  17. 17

    Mori, T. & Ikehata, S. ESR study on potassium doped pentacene. Solid State Commun. 101, 213–218 (1997).

  18. 18

    Phan, Q. T. N., Heguri, S., Tanabe, Y., Shimotani, H. & Tanigaki, K. Systematic study of the electronic states in electron-doped polyacenes. Eur. J. Inorg. Chem. 4033– 4038 (2014).

  19. 19

    Phan, Q. T. N. et al. Two different ground states in K-intercalated polyacenes. Phys. Rev. B 93, 075130 (2016).

  20. 20

    Nanditha, D. M. et al. Nanoimprinted large area heterojunction pentacene-C60 photovoltaic device. Appl. Phys. Lett. 90, 253502 (2007).

  21. 21

    Koch, N. Organic electronic devices and their functional interfaces. Chem. Phys. Chem. 8, 1438–1455 (2007).

  22. 22

    Yamashita, Y. Organic semiconductors for organic field-effect transistors. Sci. Technol. Adv. Mater. 10, 024313 (2009).

  23. 23

    Craciun, M. F. et al. Evidence for the formation of a Mott state in potassium-intercalated pentacene. Phys. Rev. B 79, 125116 (2009).

  24. 24

    Minakata, T., Ozaki, M. & Imai, H. Conducting thin films of pentacene doped with alkaline metals. J. Appl. Phys. 74, 1079–1082 (1993).

  25. 25

    Vanýsek, J. CRC Handbook of Chemistry and Physics (CRC, 2011).

  26. 26

    Bergman, I. The polarography of polycyclic aromatic hydrocarbons and the relationship between their half-wave potentials and absorption spectra. Trans. Faraday Soc. 50, 829–838 (1954).

  27. 27

    Szczepanski, J., Wehlburg, C. & Vala, M. Vibrational and electronic spectra of matrix isolated pentacene cations and anions. Chem. Phys. Lett. 232, 221–228 (1995).

  28. 28

    Mattheus, C. C. et al. Polymorphism in pentacene. Acta Crystallogr. C 57, 939–941 (2001).

  29. 29

    Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Science, 1999).

  30. 30

    Scott, T. A. et al. After 118 years, the isolation of two common radical anion reductants as simple, stable solids. Chem. Commun. 65–67 (2009).

  31. 31

    Bock, H., Gharagozloo-Hubmann, K., Sievert, M., Prisner, T. & Havlas, Z. Single crystals of an ionic anthracene aggregate with a triplet ground state. Nature 404, 267–269 (2000).

  32. 32

    Takabayashi, Y. et al. π-electron S = 1/2 quantum spin-liquid state in an ionic polyaromatic hydrocarbon. Nat. Chem. http://dx.doi.org/10.1038/nchem.2764 (2017).

  33. 33

    Kambe, T. et al. Synthesis and physical properties of metal-doped picene solids. Phys. Rev. B 86, 214507 (2012).

  34. 34

    Ferrari, A. C. & Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. Lond. A 362, 2477–2512 (2004).

  35. 35

    Naghavi, S. S. & Tosatti, E. Crystal structure search and electronic properties of alkali-doped phenanthrene and picene. Phys. Rev. B 90, 075143 (2014).

  36. 36

    Kamaras, K. & Klupp, G. Metallicity in fullerides. Dalton Trans. 43, 7366–7378 (2014).

  37. 37

    Claudia, A.-D., Dmitrii, N., Peter, P. & Christian, M. The role of polymorphism in organic thin films: oligoacenes investigated from first principles. New J. Phys. 11, 125010 (2009).

  38. 38

    Kosugi, T., Miyake, T., Ishibashi, S., Arita, R. & Aoki, H. First-principles electronic structure of solid picene. J. Phys. Soc. Jpn 78, 113704 (2009).

  39. 39

    Ruff, A. et al. Absence of metallicity in K-doped picene: importance of electronic correlations. Phys. Rev. Lett. 110, 216403 (2013).

  40. 40

    Werner, P. & Millis, A. J. High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems. Phys. Rev. Lett. 99, 126405 (2007).

  41. 41

    Larson, A. C. & von Dreele, R. General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report No. LAUR 86-748, 1994).

  42. 42

    Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

  43. 43

    Coelho, A. A. TOPAS-Academic v5 (Coelo Software, 2012).

  44. 44

    Favre-Nicolin, V. & Cerny, R. FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 35, 734–743 (2002).

  45. 45

    Stokes, H. T. & Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 38, 237–238 (2005).

  46. 46

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

  47. 47

    Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

  48. 48

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

  49. 49

    Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

  50. 50

    Lorente, N. & Persson, M. Theoretical aspects of tunneling-current-induced bond excitation and breaking at surfaces. Faraday Discuss. 117, 277–290 (2000).

  51. 51

    Fleming, R. M. et al. Preparation and structure of the alkali-metal fulleride A4C60 . Nature 352, 701–703 (1991).

  52. 52

    Zhou, O. et al. Structure and bonding in alkali-metal-doped C60 . Nature 351, 462–464 (1991).

Download references

Acknowledgements

We acknowledge financial support from the UK Engineering and Physical Sciences Research Council (EP/K027255 and EP/K027212), the European Union/JST SICORP-LEMSUPER FP7-NMP-2011-EU-Japan project (contract no. NMP3-SL-2011-283214), the Mitsubishi Foundation, the Japan Society for the Promotion of Science under the Scientific Research on Innovative Areas ‘J-Physics’ Project (no. 15H05882), the ‘World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials,’ the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Science and Technology Agency under the ERATO Isobe Degenerate π-Integration Project. We thank the Diamond Light Source for access to synchrotron X-ray facilities, and C. C. Tang, C. A. Murray and P. Adamson for beamline assistance. We thank Katalin Kamarás for help with the infrared measurements. We thank M. Persson for the use of his XVASP code and related external routines for projecting density of states onto molecular orbitals. We thank the Royal Society for a Newton International Fellowship (G.K.). M.J.R. is a Royal Society Research Professor.

Author information

K.P. and M.J.R. conceived and designed the project. M.J.R. directed and coordinated the research. F.D.R. carried out the initial syntheses using KH that identified both phases, performed the initial structure determination of both phases and performed Raman measurements. M.J.P. completed the structural analyses with C.I.H. and C.C. C.I.H. performed the final syntheses and, with M.J.P., finalized the link between synthesis and structure. G.F.S.W. defined the structural evolution of the intermolecular interactions. S.K. and A.Y.G. developed early reaction protocols, and R.H.C. undertook early structural work. D.A. computed the evolution of the void space within the material that connects the molecular packing to the cation distribution. M.S.D. performed and interpreted electronic structure calculations. G.K. performed and interpreted Raman and infrared measurements. F.D.R. and M.J.R. wrote the first draft of the paper, which was then completed with input from all the authors.

Correspondence to K. Prassides or M. J. Rosseinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6708 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romero, F., Pitcher, M., Hiley, C. et al. Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids. Nature Chem 9, 644–652 (2017). https://doi.org/10.1038/nchem.2765

Download citation

Further reading