Abstract
Biomolecular receptors are able to process information by responding differentially to combinations of chemical signals. Synthetic receptors that are likewise capable of multi-stimuli response can form the basis of programmable molecular systems, wherein specific input sequences create distinct outputs. Here we report a pseudo-cuboctahedral assembly capable of cooperatively binding anionic and neutral guest species. The binding of pairs of fullerene guests was observed to effect the all-or-nothing cooperative templation of an S6-symmetric host stereoisomer. This bis-fullerene adduct exhibits different cooperativity in binding pairs of anions from the fullerene-free parent: in one case, positive cooperativity is observed, while in another all binding affinities are enhanced by an order of magnitude, and in a third the binding events are only minimally perturbed. This intricate modulation of binding affinity, and thus cooperativity, renders our new cuboctahedral receptor attractive for incorporation into systems with complex, programmable responses to different sets of stimuli.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Stupp, S. I. & Palmer, L. C. Supramolecular chemistry and self-assembly in organic materials design. Chem. Mater. 26, 507–518 (2014).
Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2016).
Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).
Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).
Mitra, T. et al. Molecular shape sorting using molecular organic cages. Nat. Chem. 5, 276–281 (2013).
Krieg, E., Weissman, H., Shirman, E., Shimoni, E. & Rybtchinski, B. A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nat. Nanotech. 6, 141–146 (2011).
Zhang, Z. et al. Expanded porphyrin-anion supramolecular assemblies: environmentally responsive sensors for organic solvents and anions. J. Am. Chem. Soc. 137, 7769–7774 (2015).
Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010).
Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).
Miller, R. G. & Brooker, S. Spin crossover, reversible redox, and supramolecular interactions in 3d complexes of 4-(4-pyridyl)-2,5-dipyrazyl-pyridine. Inorg. Chem. 54, 5398–5409 (2015).
Cha, W.-Y. et al. Multifaceted [36]octaphyrin(1.1.1.1.1.1.1.1): deprotonation-induced switching among nonaromatic, Möbius aromatic, and Hückel antiaromatic species. Chem. Commun. 52, 6076–6078 (2016).
Schmuck, C. Guest encapsulation within self-assembled molecular containers. Angew. Chem. Int. Ed. 46, 5830–5833 (2007).
Sato, H. et al. Positive heterotropic cooperativity for selective guest binding via electronic communications through a fused zinc porphyrin array. J. Am. Chem. Soc. 127, 13086–13087 (2005).
Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).
Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).
Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 5, 100–103 (2013).
McConnell, A. J., Wood, C. S., Neelakandan, P. P. & Nitschke, J. R. Stimuli-responsive metal–ligand assemblies. Chem. Rev. 115, 7729–7793 (2015).
Carnes, M. E., Collins, M. S. & Johnson, D. W. Transmetalation of self-assembled, supramolecular complexes. Chem. Soc. Rev. 43, 1825–1834 (2014).
Jung, M., Kim, H., Baek, K. & Kim, K. Synthetic ion channel based on metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5755–5757 (2008).
Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).
Sun, Q.-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).
Beissel, T., Powers, R. E., Parac, T. N. & Raymond, K. N. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster. J. Am. Chem. Soc. 121, 4200–4206 (1999).
Mahata, K., Frischmann, P. D. & Würthner, F. Giant electroactive M4L6 tetrahedral host self-assembled with Fe(II) vertices and perylene bisimide dye edges. J. Am. Chem. Soc. 135, 15656–15661 (2013).
Custelcean, R. et al. Urea-functionalized M4L6 cage receptors: anion-templated self-assembly and selective guest exchange in aqueous solutions. J. Am. Chem. Soc. 134, 8525–8534 (2012).
Loffler, S. et al. Internal dynamics and guest binding of a sterically overcrowded host. Chem. Sci. 7, 4676–4684 (2016).
Mecozzi, S. & Rebek, J. J. The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).
García-Simón, C. et al. Sponge-like molecular cage for purification of fullerenes. Nat. Commun. 5, 5557 (2014).
Kishi, N., Li, Z., Yoza, K., Akita, M. & Yoshizawa, M. An M2L4 molecular capsule with an anthracene shell: encapsulation of large guests up to 1 nm. J. Am. Chem. Soc. 133, 11438–11441 (2011).
Suzuki, K., Takao, K., Sato, S. & Fujita, M. Coronene nanophase within coordination spheres: increased solubility of C60 . J. Am. Chem. Soc. 132, 2544–2545 (2010).
Otte, M. et al. Encapsulation of metalloporphyrins in a self-assembled cubic M8L6 cage: a new molecular flask for cobalt–porphyrin-catalysed radical-type reactions. Chem. Eur. J. 19, 10170–10178 (2013).
Kubik, S. in Chemistry of Nanocontainers (eds Albrecht, M. & Hahn, E.) 1–34 (Topics in Current Chemistry 319, Springer, 2012).
Wang, W., Wang, Y.-X. & Yang, H.-B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 45, 2656–2693 (2016).
Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).
Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).
Conway, A. & Koshland, D. E. Negative cooperativity in enzyme action. binding of diphosphopyridine nucleotide to glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 7, 4011–4023 (1968).
Mahadevi, A. S. & Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825 (2016).
Huang, Z. et al. Supramolecular chemistry of cucurbiturils: tuning cooperativity with multiple noncovalent interactions from positive to negative. Langmuir 32, 12352–12360 (2016).
Badjić, J. D., Nelson, A., Cantrill, S. J., Turnbull, W. B. & Stoddart, J. F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 38, 723–732 (2005).
Rebek, J. et al. Allosteric effects in organic chemistry: binding cooperativity in a model for subunit interactions. J. Am. Chem. Soc. 107, 7481–7487 (1985).
Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. Sect. D 50, 178–185 (1994).
Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).
Bell, Z. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. Assembly of a truncated-tetrahedral chiral [M12(μ-L)18]24+ cage. Angew. Chem. Int. Ed. 41, 2515–2518 (2002).
Ghosh, K., Hu, J., White, H. S. & Stang, P. J. Construction of multifunctional cuboctahedra via coordination-driven self-assembly. J. Am. Chem. Soc. 131, 6695–6697 (2009).
Sun, Q.-F., Sato, S. & Fujita, M. An M18L24 stellated cuboctahedron through post-stellation of an M12L24 core. Nat. Chem. 4, 330–333 (2012).
Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).
Bindfit v0.5 (Open Data Fit, 2016); http://app.supramolecular.org/bindfit/
Snyder, D. A. et al. Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J. Am. Chem. Soc. 127, 16505–16511 (2005).
Guldi, D. M. Molecular porphyrinfullerene architectures. Pure Appl. Chem. 75, 1069–1075 (2003).
Burke, M. J., Nichol, G. S. & Lusby, P. J. Orthogonal selection and fixing of coordination self-assembly pathways for robust metallo-organic ensemble construction. J. Am. Chem. Soc. 138, 9308–9315 (2016).
Acknowledgements
This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC). F.J.R. acknowledges Cambridge Australia Scholarships and the Cambridge Trust for PhD funding. We thank Diamond Light Source for time on Beamline I19 (MT11397). We also thank T. Ronson for helpful discussions regarding crystallography, and M. Kieffer and J. Carpenter for assisting with synchrotron X-ray data collections.
Author information
Authors and Affiliations
Contributions
J.R.N. and F.J.R. conceived the study, analysed the results and wrote the manuscript. F.J.R. performed the experiments.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 8081 kb)
Supplementary information
Crystallographic data for compound 1 (CIF 11226 kb)
Supplementary information
Crystallographic data for compound 2 hosting two C60 (CIF 51955 kb)
Supplementary information
Crystallographic data for compound 3 (CIF 47585 kb)
Rights and permissions
About this article
Cite this article
Rizzuto, F., Nitschke, J. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nature Chem 9, 903–908 (2017). https://doi.org/10.1038/nchem.2758
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2758