Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron

Abstract

Biomolecular receptors are able to process information by responding differentially to combinations of chemical signals. Synthetic receptors that are likewise capable of multi-stimuli response can form the basis of programmable molecular systems, wherein specific input sequences create distinct outputs. Here we report a pseudo-cuboctahedral assembly capable of cooperatively binding anionic and neutral guest species. The binding of pairs of fullerene guests was observed to effect the all-or-nothing cooperative templation of an S6-symmetric host stereoisomer. This bis-fullerene adduct exhibits different cooperativity in binding pairs of anions from the fullerene-free parent: in one case, positive cooperativity is observed, while in another all binding affinities are enhanced by an order of magnitude, and in a third the binding events are only minimally perturbed. This intricate modulation of binding affinity, and thus cooperativity, renders our new cuboctahedral receptor attractive for incorporation into systems with complex, programmable responses to different sets of stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syntheses of the Co12IIL6 isomers 1–3 and their responses to the binding of large anionic guests.
Figure 2: X-ray crystal structure of 1.
Figure 3: Characterization data for 1, (C60)2 2 and (C70)2 2.
Figure 4: Four views of the X-ray crystal structure of (C60)2 2.
Figure 5: The changes observed in the cooperativity parameter (α = 4K2/K1) when fullerenes were present in the cage.
Figure 6: Two views of the X-ray crystal structure of D4-symmetric 3.

Similar content being viewed by others

References

  1. Stupp, S. I. & Palmer, L. C. Supramolecular chemistry and self-assembly in organic materials design. Chem. Mater. 26, 507–518 (2014).

    Article  CAS  Google Scholar 

  2. Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2016).

    Article  CAS  Google Scholar 

  3. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  4. Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).

    Article  CAS  Google Scholar 

  5. Mitra, T. et al. Molecular shape sorting using molecular organic cages. Nat. Chem. 5, 276–281 (2013).

    Article  CAS  Google Scholar 

  6. Krieg, E., Weissman, H., Shirman, E., Shimoni, E. & Rybtchinski, B. A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nat. Nanotech. 6, 141–146 (2011).

    Article  CAS  Google Scholar 

  7. Zhang, Z. et al. Expanded porphyrin-anion supramolecular assemblies: environmentally responsive sensors for organic solvents and anions. J. Am. Chem. Soc. 137, 7769–7774 (2015).

    Article  CAS  Google Scholar 

  8. Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010).

    Article  CAS  Google Scholar 

  9. Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    Article  CAS  Google Scholar 

  10. Miller, R. G. & Brooker, S. Spin crossover, reversible redox, and supramolecular interactions in 3d complexes of 4-(4-pyridyl)-2,5-dipyrazyl-pyridine. Inorg. Chem. 54, 5398–5409 (2015).

    Article  CAS  Google Scholar 

  11. Cha, W.-Y. et al. Multifaceted [36]octaphyrin(1.1.1.1.1.1.1.1): deprotonation-induced switching among nonaromatic, Möbius aromatic, and Hückel antiaromatic species. Chem. Commun. 52, 6076–6078 (2016).

    Article  CAS  Google Scholar 

  12. Schmuck, C. Guest encapsulation within self-assembled molecular containers. Angew. Chem. Int. Ed. 46, 5830–5833 (2007).

    Article  CAS  Google Scholar 

  13. Sato, H. et al. Positive heterotropic cooperativity for selective guest binding via electronic communications through a fused zinc porphyrin array. J. Am. Chem. Soc. 127, 13086–13087 (2005).

    Article  CAS  Google Scholar 

  14. Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    Article  CAS  Google Scholar 

  15. Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).

    Article  CAS  Google Scholar 

  16. Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 5, 100–103 (2013).

    Article  CAS  Google Scholar 

  17. McConnell, A. J., Wood, C. S., Neelakandan, P. P. & Nitschke, J. R. Stimuli-responsive metal–ligand assemblies. Chem. Rev. 115, 7729–7793 (2015).

    Article  CAS  Google Scholar 

  18. Carnes, M. E., Collins, M. S. & Johnson, D. W. Transmetalation of self-assembled, supramolecular complexes. Chem. Soc. Rev. 43, 1825–1834 (2014).

    Article  CAS  Google Scholar 

  19. Jung, M., Kim, H., Baek, K. & Kim, K. Synthetic ion channel based on metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5755–5757 (2008).

    Article  CAS  Google Scholar 

  20. Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    Article  CAS  Google Scholar 

  21. Sun, Q.-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    Article  CAS  Google Scholar 

  22. Beissel, T., Powers, R. E., Parac, T. N. & Raymond, K. N. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster. J. Am. Chem. Soc. 121, 4200–4206 (1999).

    Article  CAS  Google Scholar 

  23. Mahata, K., Frischmann, P. D. & Würthner, F. Giant electroactive M4L6 tetrahedral host self-assembled with Fe(II) vertices and perylene bisimide dye edges. J. Am. Chem. Soc. 135, 15656–15661 (2013).

    Article  CAS  Google Scholar 

  24. Custelcean, R. et al. Urea-functionalized M4L6 cage receptors: anion-templated self-assembly and selective guest exchange in aqueous solutions. J. Am. Chem. Soc. 134, 8525–8534 (2012).

    Article  CAS  Google Scholar 

  25. Loffler, S. et al. Internal dynamics and guest binding of a sterically overcrowded host. Chem. Sci. 7, 4676–4684 (2016).

    Article  Google Scholar 

  26. Mecozzi, S. & Rebek, J. J. The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    Article  CAS  Google Scholar 

  27. García-Simón, C. et al. Sponge-like molecular cage for purification of fullerenes. Nat. Commun. 5, 5557 (2014).

    Article  Google Scholar 

  28. Kishi, N., Li, Z., Yoza, K., Akita, M. & Yoshizawa, M. An M2L4 molecular capsule with an anthracene shell: encapsulation of large guests up to 1 nm. J. Am. Chem. Soc. 133, 11438–11441 (2011).

    Article  CAS  Google Scholar 

  29. Suzuki, K., Takao, K., Sato, S. & Fujita, M. Coronene nanophase within coordination spheres: increased solubility of C60 . J. Am. Chem. Soc. 132, 2544–2545 (2010).

    Article  CAS  Google Scholar 

  30. Otte, M. et al. Encapsulation of metalloporphyrins in a self-assembled cubic M8L6 cage: a new molecular flask for cobalt–porphyrin-catalysed radical-type reactions. Chem. Eur. J. 19, 10170–10178 (2013).

    Article  CAS  Google Scholar 

  31. Kubik, S. in Chemistry of Nanocontainers (eds Albrecht, M. & Hahn, E.) 1–34 (Topics in Current Chemistry 319, Springer, 2012).

    Google Scholar 

  32. Wang, W., Wang, Y.-X. & Yang, H.-B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 45, 2656–2693 (2016).

    Article  CAS  Google Scholar 

  33. Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).

    Article  CAS  Google Scholar 

  34. Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    Article  CAS  Google Scholar 

  35. Conway, A. & Koshland, D. E. Negative cooperativity in enzyme action. binding of diphosphopyridine nucleotide to glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 7, 4011–4023 (1968).

    Article  CAS  Google Scholar 

  36. Mahadevi, A. S. & Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825 (2016).

    Article  CAS  Google Scholar 

  37. Huang, Z. et al. Supramolecular chemistry of cucurbiturils: tuning cooperativity with multiple noncovalent interactions from positive to negative. Langmuir 32, 12352–12360 (2016).

    Article  CAS  Google Scholar 

  38. Badjić, J. D., Nelson, A., Cantrill, S. J., Turnbull, W. B. & Stoddart, J. F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 38, 723–732 (2005).

    Article  Google Scholar 

  39. Rebek, J. et al. Allosteric effects in organic chemistry: binding cooperativity in a model for subunit interactions. J. Am. Chem. Soc. 107, 7481–7487 (1985).

    Article  CAS  Google Scholar 

  40. Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. Sect. D 50, 178–185 (1994).

    Article  CAS  Google Scholar 

  41. Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).

    Article  CAS  Google Scholar 

  42. Bell, Z. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. Assembly of a truncated-tetrahedral chiral [M12(μ-L)18]24+ cage. Angew. Chem. Int. Ed. 41, 2515–2518 (2002).

    Article  CAS  Google Scholar 

  43. Ghosh, K., Hu, J., White, H. S. & Stang, P. J. Construction of multifunctional cuboctahedra via coordination-driven self-assembly. J. Am. Chem. Soc. 131, 6695–6697 (2009).

    Article  CAS  Google Scholar 

  44. Sun, Q.-F., Sato, S. & Fujita, M. An M18L24 stellated cuboctahedron through post-stellation of an M12L24 core. Nat. Chem. 4, 330–333 (2012).

    Article  CAS  Google Scholar 

  45. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  CAS  Google Scholar 

  46. Bindfit v0.5 (Open Data Fit, 2016); http://app.supramolecular.org/bindfit/

  47. Snyder, D. A. et al. Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J. Am. Chem. Soc. 127, 16505–16511 (2005).

    Article  CAS  Google Scholar 

  48. Guldi, D. M. Molecular porphyrinfullerene architectures. Pure Appl. Chem. 75, 1069–1075 (2003).

    Article  CAS  Google Scholar 

  49. Burke, M. J., Nichol, G. S. & Lusby, P. J. Orthogonal selection and fixing of coordination self-assembly pathways for robust metallo-organic ensemble construction. J. Am. Chem. Soc. 138, 9308–9315 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC). F.J.R. acknowledges Cambridge Australia Scholarships and the Cambridge Trust for PhD funding. We thank Diamond Light Source for time on Beamline I19 (MT11397). We also thank T. Ronson for helpful discussions regarding crystallography, and M. Kieffer and J. Carpenter for assisting with synchrotron X-ray data collections.

Author information

Authors and Affiliations

Authors

Contributions

J.R.N. and F.J.R. conceived the study, analysed the results and wrote the manuscript. F.J.R. performed the experiments.

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8081 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 11226 kb)

Supplementary information

Crystallographic data for compound 2 hosting two C60 (CIF 51955 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 47585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzuto, F., Nitschke, J. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nature Chem 9, 903–908 (2017). https://doi.org/10.1038/nchem.2758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing