Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Monitoring interconversion between stereochemical states in single chirality-transfer complexes on a platinum surface

Abstract

Elementary steps in enantioselective heterogeneous catalysis take place on the catalyst surface and the targeted synthesis of a desired enantiomer requires the implantation of chiral information at the surface, which can be achieved—for example—by adsorbing chiral molecules. Studies of the structures of complexes formed between adsorbed prochiral reagents and chiral molecules yield information on the forces exerting stereocontrol, but further insight could be gained by studying the dynamics of their interactions. Here, using time-lapsed scanning tunnelling microscopy and density functional theory, we observe coupling between multiple stereochemical states within individual non-covalently bonded chirality-transfer complexes on a metal surface. We identify two modes of transformation between stereochemical states and find that the prochiral reagent can sample several complexation geometries during the lifetime of a complex, switching between states of opposing prochirality in the process. These results provide insight on the contribution of individual stereochemical states to the overall enantioselectivity of reactions occurring on catalyst surfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determining the prochirality of TFAP from the STM image of a TFAP/(R)-NEA complex22,27.
Figure 2: Time-lapsed STM images of individual TFAP/exo-(R)-NEA complexes showing interconversion between complexation configurations.
Figure 3: Fluxional events specific to individual TFAP/exo-(R)-NEA preorganization states.
Figure 4: Schematic depiction of the enantioselective hydrogenation of TFAP on (R)-NEA modified Pt and schematic depiction of competing reaction coordinates.

References

  1. Corma, A. Heterogeneous catalysis: understanding for designing, and designing for applications. Angew. Chem. Int. Ed. 55, 6112–6113 (2016).

    CAS  Google Scholar 

  2. Ye, R., Hurlburt, T. J., Sabyrov, K., Alayoglu, S. & Somorjai, G. A. Molecular catalysis science: perspective on unifying the fields of catalysis. Proc. Natl Acad. Sci. USA 113, 5159–5166 (2016).

    CAS  PubMed  Google Scholar 

  3. Lauritsen, J. V. & Besenbacher, F. Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts. J. Catal. 328, 49–58 (2015).

    CAS  Google Scholar 

  4. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenation. Science 335, 1209–1212 (2012).

    CAS  PubMed  Google Scholar 

  5. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Orito, Y., Imai, S., Niwa, S. & Nguyen, G.-H. Asymmetric hydrogenation of methyl benzoylformate using platinum-carbon catalysts modified with cinchonidine. J. Synth. Org. Chem. Jpn 37, 173–174 (1979).

    CAS  Google Scholar 

  7. Gellman, A. J., Tysoe, W. T. & Zaera, F. Surface chemistry for enantioselective catalysis. Catal. Lett. 145, 220–232 (2015).

    CAS  Google Scholar 

  8. Kyriakou, G., Beaumont, S. K. & Lambert, R. M. Aspects of heterogeneous enantioselective catalysis by metals. Langmuir 27, 9687–9695 (2011).

    CAS  PubMed  Google Scholar 

  9. Dementyev, P., Peter, M., Adamovsky, S. & Schauermann, S. Chirally-modified metal surfaces: energetics of interaction with chiral molecules. Phys. Chem. Chem. Phys. 17, 22726–22735 (2015).

    CAS  PubMed  Google Scholar 

  10. Wilson, K. E., Trant, A. G. & Baddeley, C. J. Interaction of the pro-chiral molecule, methylacetoacetate, with (S)-aspartic acid modified Ni(111). J. Phys. Chem. C 116, 1092–1098 (2012).

    CAS  Google Scholar 

  11. Meemken, F., Hungerbühler, K. & Baiker, A. Monitoring surface processes during heterogeneous asymmetric hydrogenation of ketones on a chirally modified platinum catalyst by operando spectroscopy. Angew. Chem. Int. Ed. 53, 8640–8644 (2014).

    CAS  Google Scholar 

  12. Raval, R. Assembling molecular guidance systems for heterogeneous enantioselective catalysis. Cat. Tech. 5, 12–28 (2001).

    Google Scholar 

  13. Larrea, C. R. & Baddeley, C. J. Fabrication of a high-quality, porous, surface-confined covalent organic framework on a reactive metal surface. Chem. Phys. Chem. 17, 971–975 (2016).

    CAS  PubMed  Google Scholar 

  14. Zaera, F. Regio-, stereo-, and enantioselectivity in hydrocarbon conversion on metal surfaces. Acc. Chem. Res. 42, 1152–1160 (2009).

    CAS  PubMed  Google Scholar 

  15. Fang, Y. et al. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nat. Chem. 8, 711–717 (2016).

    CAS  PubMed  Google Scholar 

  16. Ernst, K.-H. Stereochemical recognition of helicenes on metal surfaces. Acc. Chem. Res. 49, 1182–1190 (2016).

    CAS  PubMed  Google Scholar 

  17. Forster, M. & Raval, R. Simple rules and the emergence of complexity in surface chirality. Chem. Commun. 52, 14075–14084 (2016).

    CAS  Google Scholar 

  18. Yun, Y. & Gellman, A. J. Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nat. Chem. 7, 520–525 (2015).

    CAS  PubMed  Google Scholar 

  19. Yasukawa, T., Suzuki, A., Miyamura, H., Nishino, K. & Kobayashi, S. Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 137, 6616–6623 (2015).

    CAS  PubMed  Google Scholar 

  20. Rodríguez-García, L., Hungerbühler, K., Baiker, A. & Meemken, F. Discrimination of active species in liquid-phase hydrogenation on supported noble metal catalyst: an operando spectroscopic study on the asymmetric hydrogenation of ketopantolactone on Pt/Al2O3 and Pt/C modified by cinchonidine. Catal. Today 283, 66–73 (2017).

    Google Scholar 

  21. Baiker, A. Crucial aspects in the design of chirally modified noble metal catalysts for asymmetric hydrogenation of activated ketones. Chem. Soc. Rev. 44, 7449–7464 (2015).

    CAS  PubMed  Google Scholar 

  22. Demers-Carpentier, V. et al. Direct observation of molecular preorganization for chirality transfer on a catalyst surface. Science 334, 776–780 (2011).

    CAS  PubMed  Google Scholar 

  23. Mahapatra, M. et al. Enhanced hydrogenation activity and diastereomeric interactions of methyl pyruvate co-adsorbed with R-1-(1-naphthyl)ethylamine on Pd(111). Nat. Commun. 7, 12380 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Demers-Carpentier, V. et al. Stereodirection of an α-ketoester at sub-molecular sites on chirally modified Pt(111): heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 135, 9999–10002 (2013).

    CAS  PubMed  Google Scholar 

  25. Svane, K. et al. Single-chiral-catalytic-surface-sites: STM and DFT study of stereodirecting complexes formed between (R)-1-(1-naphthyl)ethylamine and ketopantolactone on Pt(111). Catal. Sci. Technol. 5, 743–753 (2015).

    CAS  Google Scholar 

  26. Orglmeister, E., Bürgi, T., Mallat, T. & Baiker, A. Conformational rigidity: a necessary prerequisite of chiral modifiers used in heterogeneous enantioselective catalysis? J. Catal. 232, 137–142 (2005).

    CAS  Google Scholar 

  27. Groves, M. N. et al. Structure determination of chemisorbed chirality transfer complexes: accelerated STM analysis and exchange-correlation functional sensitivity. Surf. Sci. 629, 48–56 (2014).

    CAS  Google Scholar 

  28. Goubert, G. et al. Walking-like diffusion of two-footed asymmetric aromatic adsorbates on Pt(111). Surf. Sci. 629, 123–131 (2014).

    CAS  Google Scholar 

  29. Dong, Y., Svane, K. L., Lemay, J.-C., Groves, M. N. & McBreen, P. H. STM study of ketopantolactone/(R)-1-(1-naphthyl)ethylamine complexes on Pt(111): comparison of prochiral and enantiomeric ratios and examination of the contribution of CHOC bonding. ACS Catal. 7, 1757–1765 (2017).

    CAS  Google Scholar 

  30. Schneider, H. J. Hydrogen bonds with fluorine. Studies in solution, in gas phase and by computations, conflicting conclusions from crystallographic analyses. Chem. Sci. 3, 1381–1394 (2012).

    CAS  Google Scholar 

  31. Witte, G., Range, H., Toennies, J. P. & Wöll, C. External vibrations of molecules on surfaces: the case of CO and benzene. J. Electron Spectros. Relat. Phenom. 64–65, 715–723 (1993).

    Google Scholar 

  32. Orglmeister, E., Mallat, T. & Baiker, A. Synthetic modifiers for platinum in the enantioselective hydrogenation of ketopantolactone: a test for the mechanistic models of ketone hydrogenation. Adv. Synth. Catal. 347, 78–86 (2005).

    CAS  Google Scholar 

  33. Yasukawa, T., Miyamura, H. & Kobayashi, S. Chiral ligand-modified metal nanoparticles as unique catalysts for asymmetric C–C bond forming reactions. How are active species generated? ACS Catal. 6, 7979–7988 (2016).

    CAS  Google Scholar 

  34. Schmidt, E., Vargas, A., Mallat, T. & Baiker, A. Shape-selective enantioselective hydrogenation on Pt nanoparticles. J. Am. Chem. Soc. 131, 12358–12367 (2009).

    CAS  PubMed  Google Scholar 

  35. Meemken, F., Baiker, A., Schenker, S. & Hungerbühler, K. Chiral modification of platinum by co-adsorbed cinchonidine and trifluoroacetic acid: origin of enhanced stereocontrol in the hydrogenation of trifluoroacetophenone. Chem. Eur. J. 20, 1298–1309 (2014).

    CAS  PubMed  Google Scholar 

  36. Beak, P. et al. Dynamic thermodyamic resolution: control of enantioselectivity through diastereomeric equilibration. Acc. Chem. Res. 33, 715–727 (2000).

    CAS  PubMed  Google Scholar 

  37. Blaser, H.-U. Looking back on 35 years of industrial catalysis. Chim. Int. J. Chem. 69, 393–406 (2015).

    CAS  Google Scholar 

  38. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B. 71, 035109 (2005).

    Google Scholar 

  39. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    CAS  PubMed  Google Scholar 

  40. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 22, 22201 (2010).

    Google Scholar 

  41. Kolsbjerg, E. L., Groves, M. N. & Hammer, B. An automatic nudged elastic band method. J. Chem. Phys. 145, 094107 (2016).

    PubMed  Google Scholar 

  42. Rasmussen, A. M. H., Groves, M. N. & Hammer, B. Remote activation of chemical bonds in heterogeneous catalysis. ACS Catal. 4, 1182–1188 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

The STM work was carried out within the FQRNT Center on Catalysis and Green Chemistry (CCVC). Y.D. acknowledges an NSERC graduate student scholarship. J.-C.L. and G.G. acknowledge FQRNT scholarships. The work was supported by NSERC Discovery, FQRNT and CFI grants. Financial support from the Danish Council for Independent Research Nature and Universe and the Lundbeck Foundation is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

G.G., Y.D. and P.H.McB. designed the STM experiments. G.G., Y.D. and J.-C.L. performed the STM experiments. Y.D. and G.G. performed the statistical analysis of the STM data. M.N.G. and B.H. designed, performed and interpreted the DFT calculations. G.G., Y.D and P.H.McB. co-wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Bjørk Hammer or Peter H. McBreen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goubert, G., Dong, Y., Groves, M. et al. Monitoring interconversion between stereochemical states in single chirality-transfer complexes on a platinum surface. Nature Chem 9, 531–536 (2017). https://doi.org/10.1038/nchem.2753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing