Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium

Abstract

Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal–difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal–difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal–difluorocarbene complex catalysed reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A catalytic approach to difluoromethylated arenes using ClCF2H.
Figure 2: Pd-catalysed difluoromethylation of biologically active molecules.
Figure 3: Mechanistic studies.

Similar content being viewed by others

References

  1. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  Google Scholar 

  2. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article  CAS  Google Scholar 

  3. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    Article  CAS  Google Scholar 

  4. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).

    Article  CAS  Google Scholar 

  5. Tomashenko, O. A. & Grushin, V. V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 111, 4475–4521 (2011).

    Article  CAS  Google Scholar 

  6. Liang, T., Neumann, C. N. & Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013).

    Article  CAS  Google Scholar 

  7. Chen, B. & Vicic, D. Transition-metal-catalyzed difluoromethylation, difluoromethylenation, and polydifluoromethylenation reactions. Top. Organomet. Chem. 52, 113–142 (2014).

    Article  Google Scholar 

  8. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  Google Scholar 

  9. Erickson, J. A. & McLoughlin, J. I. Hydrogen bond donor properties of the difluoromethyl group. J. Org. Chem. 60, 1626–1631 (1995).

    Article  CAS  Google Scholar 

  10. Hudlicky, M. & Pavlath, A. E. Chemistry of Organic Fluorine Compounds II (American Chemical Society, 1995).

  11. Hine, J. & Porter, J. J. Methylene derivatives as intermediates in polar reactions. VIII. Difluoromethylene in the reaction of chlorodifluoromethane with sodium methoxide. J. Am. Chem. Soc. 79, 5493–5496 (1957).

    Article  CAS  Google Scholar 

  12. Miller, T. G. & Thanassi, J. W. The preparation of aryl difluoromethyl ethers. J. Org. Chem. 25, 2009–2012 (1960).

    Article  CAS  Google Scholar 

  13. Moore, G. G. I. Fluoroalkanesulfonyl chlorides. J. Org. Chem. 44, 1708–1711 (1979).

    Article  CAS  Google Scholar 

  14. Nawrot, E. & Jonczyk, A. Difluoromethyltrialkylammonium salts their expeditious synthesis from chlorodifluoromethane and tertiary amines in the presence of concentrated aqueous sodium hydroxide. The catalytic process. J. Org. Chem. 72, 10258–10260 (2007).

    Article  CAS  Google Scholar 

  15. Obayashi, M., Ito, E., Matsui, K . & Kondo, K. (Diethylphosphinyl)difluoromethyllithium — preparation and synthetic application. Tetrahedron Lett. 23, 2323–2326 (1982).

    Article  CAS  Google Scholar 

  16. Metcalf, B. W. et al. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc. 100, 2551–2553 (1978).

    Article  CAS  Google Scholar 

  17. Konno, T. & Kitazume, T. Novel synthesis and application of γ-difluoromethylated prop-2-ynylic and allylic alcohols. Chem. Commun. 19, 2227–2228 (1996).

    Article  Google Scholar 

  18. Markovsi, L. N., Pahinnik, V. E. & Kirsanov, A. V. Application of dialkylaminosulfur trifluorides in the synthesis of fluoroorganic compounds. Synthesis 12, 787–789 (1973).

    Article  Google Scholar 

  19. Middleton, W. J. New fluorinating reagents. Dialkylaminosulfur fluorides. J. Org. Chem. 40, 574–578 (1975).

    Article  CAS  Google Scholar 

  20. Fujikawa, K., Fujioka, Y., Kobayashi, A. & Amii, H . A new method for aromatic difluoromethylation: copper-catalyzed cross-coupling and decarboxylation sequence from aryl iodides. Org. Lett. 13, 5560−5563 (2011).

    Article  CAS  Google Scholar 

  21. Fujiwara, Y. et al. A new reagent for direct difluoromethylation. J. Am. Chem. Soc. 134, 1494–1497 (2012).

    Article  CAS  Google Scholar 

  22. Fier, P. S. & Hartwig, J. F. Copper-mediated difluoromethylation of aryl and vinyl iodides. J. Am. Chem. Soc. 134, 5524−5527 (2012).

    Article  CAS  Google Scholar 

  23. Prakash, G. K. S. et al. Copper-mediated difluoromethylation of (hetero)aryl iodides and β-styryl halides with tributyl(difluoromethyl)stannane. Angew. Chem. Int. Ed. 51, 12090–12094 (2012).

    Article  CAS  Google Scholar 

  24. Gu, Y., Leng, X. & Shen, Q. Cooperative dual palladium/silver catalyst for direct difluoromethylation of aryl bromides and iodides. Nat. Commun. 5, 5405 (2014).

    Article  CAS  Google Scholar 

  25. Matheis, C., Jouvin, K. & Goossen, L. Sandmeyer difluoromethylation of (hetero-)arenediazonium salts. Org. Lett. 16, 5984–5987 (2014).

    Article  CAS  Google Scholar 

  26. Feng, Z., Min, Q.-Q. & Zhang, X. Access to difluoromethylated arenes by Pd-catalyzed reaction of arylboronic acids with bromodifluoroacetate. Org. Lett. 18, 44–47 (2016).

    Article  CAS  Google Scholar 

  27. Xu, L. & Vicic, D. A. Direct difluoromethylation of aryl halides via base metal catalysis at room temperature. J. Am. Chem. Soc. 138, 2536–2539 (2016).

    Article  CAS  Google Scholar 

  28. Deng, X.-Y., Lin, J.-H. & Xiao, J.-C. Pd-catalyzed transfer of difluorocarbene. Org. Lett. 18, 4384–4387 (2016).

    Article  CAS  Google Scholar 

  29. Ruppert, I., Schlich, K. & Volbach, W. Die ersten CF3-substituierten organyl(chlor)silane. Tetrahedron Lett. 25, 2195–2198 (1984).

    Article  CAS  Google Scholar 

  30. Tyutyunov, A. A., Boyko, V. E. & Igoumnov, S. M. The unusual reaction of (trifluoromethyl)trimethylsilane with sodium borohydride. Fluorine Notes 74, 1 (2011).

    CAS  Google Scholar 

  31. Prakash, G. K. S., Hu, J. & Olah, G. A. Preparation of tri- and difluoromethylsilanes via an unusual magnesium metal-mediated reductive tri- and difluoromethylation of chlorosilanes using tri- and difluoromethyl sulfides, sulfoxides, and sulfones. J. Org. Chem. 68, 4457–4463 (2003).

    Article  CAS  Google Scholar 

  32. Brahms, D. L. S. & Dailey, W. P. Fluorinated carbenes. Chem. Rev. 96, 1585–1632 (1996).

    Article  CAS  Google Scholar 

  33. Brothers, P. J. & Roper, W. R. Transition-metal dihalocarbene complexes. Chem. Rev. 88, 1293–1326 (1988).

    Article  CAS  Google Scholar 

  34. Takahira, Y. & Morizawa, Y. Ruthenium-catalyzed olefin cross-metathesis with tetrafluoroethylene and analogous fluoroolefins. J. Am. Chem. Soc. 137, 7031–7034 (2015).

    Article  CAS  Google Scholar 

  35. Trnka, T. M., Day, M. W. & Grubbs, R. H. Olefin metathesis with 1,1-difluoroethylene. Angew. Chem. Int. Ed. 40, 3441–3444 (2001).

    Article  CAS  Google Scholar 

  36. Harrison, D. J., Daniels, A. L., Korobkov, I. & Baker, R. T. d10 nickel difluorocarbenes and their cycloaddition reactions with tetrafluoroethylene. Organometallics 34, 5683–5686 (2015).

    Article  CAS  Google Scholar 

  37. Bakhmutov, V. I. et al. CF3–Ph reductive elimination from [(Xantphos)Pd(CF3)(Ph)]. Organometallics 31, 1315–1328 (2012).

    Article  CAS  Google Scholar 

  38. Ishiyama, T . et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  Google Scholar 

  39. Tobisu, M., Kinuta, H., Kita, Y., Rémond, E. & Chatani, N. Rhodium(I)-catalyzed borylation of nitriles through the cleavage of carbon–cyano bonds. J. Am. Chem. Soc. 134, 115–118 (2012).

    Article  CAS  Google Scholar 

  40. Harrison, D. J., Gorelsky, S. I., Lee, G. M., Korobkov, I. & Baker, R. T. Cobalt fluorocarbene complexes. Organometallics 32, 12–15 (2013).

    Article  CAS  Google Scholar 

  41. Grushin, V. V. & Marshall, W. J. Facile Ar-CF3 bond formation at Pd. Strikingly different outcomes of reductive elimination from [(Ph3P)2Pd(CF3)Ph] and [(Xantphos)Pd(CF3)Ph]. J. Am. Chem. Soc. 128, 12644–12645 (2006).

    Article  CAS  Google Scholar 

  42. Yang, Z.-Y., Wiemers, D. M. & Burton, D. J. Trifluoromethylcopper: a useful difluoromethylene transfer reagent: a novel double insertion of difluoromethylene into pentafluorophenylcopper. J. Am. Chem. Soc. 114, 4402–4403 (1992).

    Article  CAS  Google Scholar 

  43. Clark, G. R., Hoskins, S. V., Jones, T. C. & Roper, W. R. Oxidation state control of the reactivity of a transition metal-carbon double bond. Synthesis, X-ray crystal structure, and reactions of the zerovalent difluorocarbene complex [Ru=CF2)(CO)2(PPh3)2]. J. Chem. Soc. Chem. Commun. 1983, 719–721 (1983).

    Article  Google Scholar 

  44. Markies, B. A. et al. Synthesis and structural studies of phenyl(iodo)- and methyl(phenyl)palladium(II) complexes of bidentate nitrogen donor ligands. J. Organomet. Chem. 482, 191–199 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Basic Research Program of China (973 Program) (2012CB821600 and 2015CB931900), the National Natural Science Foundation of China (21425208, 21672238, 21421002 and 21332010), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and SIOC. We thank Y. Guo (SIOC) and H.-Y. Wang (SIOC) for assistance with MS analysis of palladium difluorocarbene complexes. We thank W. A. van der Donk and S. Zhang for proof-reading and helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Z.F., Q.-Q.M. and X.-P.F. contributed equally to this work. X.Z. and Z.F. conceived and designed the experiments. Z.F., Q.-Q.M. and X.-P.F. performed the experiments. X.-P.F. conducted mechanistic studies. A.L. prepared some starting materials. Q.-Q.M. and X.-P.F. analysed the data. X.Z. wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xingang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Min, QQ., Fu, XP. et al. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium. Nature Chem 9, 918–923 (2017). https://doi.org/10.1038/nchem.2746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing