Abstract
Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Rodriguez-Navarro, C., Kudlacz, K., Cizer, O. & Ruiz-Agudo, E. Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. CrystEngComm 17, 58–72 (2015).
Wallace, A. F. et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).
Auer, S., Ricchiuto, P. & Kashchiev, D. Two-step nucleation of amyloid fibrils: omnipresent or not? J. Mol. Biol. 422, 723–730 (2012).
Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).
Pulawski, W., Ghoshdastider, U., Andrisano, V. & Filipek, S. Ubiquitous amyloids. Appl. Biochem. Biotechnol. 166, 1626–1643 (2012).
Stephan Joseph, S. et al. The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton. Cell Rep. 11, 1772–1785 (2015).
Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).
Sanders, D. W., Kaufman, S. K., Holmes, B. B. & Diamond, M. I. Prions and protein assemblies that convey biological information in health and disease. Neuron 89, 433–448 (2016).
Tjernberg, L. O. et al. Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548 (1996).
Xue, W.-F., Homans, S. W. & Radford, S. E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl Acad. Sci. USA 105, 8926–8931 (2008).
Smith, J. E. et al. Defining the dynamic conformational networks of cross-β peptide assembly. Isr. J. Chem. 55, 763–769 (2015).
Liang, C. et al. Kinetic intermediates in amyloid assembly. J. Am. Chem. Soc. 136, 15146–15149 (2014).
Hansen, F. K. & Ugelstad, J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. J. Polym. Sci. Polym. Chem. Ed. 16, 1953–1979 (1978).
Nomura, M., Tobita, H. & Suzuki, K. in Polymer Particles Advances in Polymer Science (ed. Okubo, M.) 1–128 (Springer, 2005).
Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182 (2001).
Mehta, A. K. et al. Facial symmetry in protein self-assembly. J. Am. Chem. Soc. 130, 9829–9835 (2008).
Eichner, T. & Radford, S. E. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell. 43, 8–18 (2011).
Childers, W. S., Anthony, N. R., Mehta, A. K., Berland, K. M. & Lynn, D. G. Phase networks of cross-β peptide assemblies. Langmuir 28, 6386–6395 (2012).
Rubinov, B. et al. Transient fibril structures facilitating nonenzymatic self-replication. ACS Nano 5, 7893–7901 (2012).
Goodwin, J. T. & Lynn, D. G. Template-directed synthesis: use of a reversible reaction. J. Am. Chem. Soc. 114, 9197–9198 (1992).
Li, X., Zhan, Z. Y., Knipe, R. & Lynn, D. G. DNA-catalyzed polymerization. J. Am. Chem. Soc. 124, 746–747 (2002).
Li, X. Y., Hernandez, A. F., Grover, M. A., Hud, N. V. & Lynn, D. G. Step-growth control in template-directed polymerization. Heterocycles 82, 1477–1488 (2011).
Green, D. G., Liu, J. & Abbass, H. Dual Phase Evolution 1st edn (Springer, 2014).
Frederix, P. W. J. M., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380–2384 (2011).
Fife, T. H. & Jao, L. K. General acid catalysis of acetal hydrolysis. The hydrolysis of 2-aryloxytetrahydropyrans. J. Am. Chem. Soc. 90, 4081–4085 (1968).
Giuseppone, N. & Lehn, J.-M. Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. Chem. Eur. J. 12, 1715–1722 (2006).
Gilbert, R. G. Emulsion Polymerization: A Mechanistic Approach (Academic, 1995).
Krebs, M. R. H., Bromley, E. H. C. & Donald, A. M. The binding of thioflavin-T to amyloid fibrils: localisation and implications. J. Struct. Biol. 149, 30–37 (2005).
Hamilton-Brown, P., Bekard, I., Ducker, W. A. & Dunstan, D. E. How does shear affect Aβ fibrillogenesis? J. Phys. Chem. B. 112, 16249–16252 (2008).
Peters, R. in Xenopus Protocols: Cell Biology and Signal Transduction (ed. Johné Liu, X.) 235–258 (Humana, 2006).
Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L. & Beyreuther, K. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease βA4 peptides. J. Mol. Biol. 228, 460–473 (1992).
Wood, S. J., Wetzel, R., Martin, J. D. & Hurle, M. R. Prolines and aamyloidogenicity in fragments of the Alzheimer's peptide b/A4. Biochemistry 34, 724–730 (1995).
Williams, A. D. et al. Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842 (2004).
Childers, W. S., Mehta, A. K., Ni, R., Taylor, J. V. & Lynn, D. G. Peptides organized as bilayer membranes. Angew. Chem. Int. Ed. 49, 4104–4107 (2010).
Li, S. et al. Design of asymmetric peptide bilayer membranes. J. Am. Chem. Soc. 138, 3579–3586 (2016).
Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).
Collinge, J. Prion strain mutation and selection. Science 328, 1111–1112 (2010).
Goodwin, J. T. et al. Alternative Chemistries of Life: Empirical Approaches (NASA, NSF, 2014).
Higgs, P. G. & Lehman, N. The RNA World: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2015).
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).
Leunissen, M. E. et al.. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).
Tagliazucchi, M., Weiss, E. A. & Szleifer, I. Dissipative self-assembly of particles interacting through time-oscillatory potentials. Proc. Natl Acad. Sci. USA 111, 9751–9756 (2014).
Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotech. 10, 111–119 (2015).
Carnall, J. M. A. et al.. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).
Wagner, N., Tannenbaum, E. & Ashkenasy, G. Second order catalytic quasispecies yields discontinuous mean fitness at error threshold. Phys. Rev. Lett. 104, 188101 (2010).
Rubinov, B., Wagner, N., Rapaport, H. & Ashkenasy, G. Self-replicating amphiphilic β-sheet peptides. Angew. Chem. Int. Ed. 48, 6683–6686 (2009).
Cougnon, F. B. L. & Sanders, J. K. M. Evolution of dynamic combinatorial chemistry. Acc. Chem. Res. 45, 2211–2221 (2011).
Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).
Ruiz-Mirazo, K., Umerez, J. & Moreno, A. Enabling conditions for ‘open-ended evolution’. Biol. Philos. 23, 67–85 (2008).
Goodman, J. Evidence for ecological learning and domain specificity in rational asset pricing and market efficiency. J. Socio. Econ. 48, 27–39 (2014).
Cavaliere, M., Sedwards, S., Tarnita, C. E., Nowak, M. A. & Csikász-Nagy, A. Prosperity is associated with instability in dynamical networks. J. Theor. Biol. 299, 126–138 (2012).
Goodwin, J. T., Mehta, A. K. & Lynn, D. G. Digital and analog chemical evolution. Acc. Chem. Res. 45, 2189–2199 (2012).
Kapil, N., Singh, A. & Das, D. Cross-β amyloid nanohybrids loaded with cytochrome C exhibit superactivity in organic solvents. Angew. Chem. Int. Ed. 54, 6492–6495 (2015).
Ivnitski, D. D. et al. Introducing charge transfer functionality into prebiotically relevant β-sheet peptide fibrils. Chem. Commun. 50, 6733–6736 (2014).
Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).
Omosun, T. O. et al. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. http://dx.doi.org/10.1038/nchem.2738 (2017).
Rodriguez-Navarro, A. B. XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Crystallogr. 39, 905–909 (2006).
Mohamadi, F. et al.. Macromodel — an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11, 440–467 (1990).
Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).
Polak, E. & Ribiere, G. PR conjugate gradient (PRCG) — best general method. Rev. Fr. Inform. Rech. O. 16, 35–43 (1969).
Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proc. ACM/IEEE Conf. on Supercomputing (SC06) (2006).
Acknowledgements
We are grateful to H. Yi and J. Taylor in the Emory Robert P. Apkarian Microscopy Core for TEM, the Emory Microscopy Core for fluorescence imaging, J. Bacsa in the Emory X-ray Crystallography Center for X-ray diffraction, F. Strobel in the Emory Mass Spectrometry Center for LC-MS, M. Zhou and F. Fernandez in the School of Chemistry and Biochemistry, Georgia Institute of Technology for IMS-MS, the NASA Astrobiology Program, under the NSF CCI, CHE-1004570 (CC, PT, MCH), the James S. McDonnell Foundation (J.T., M.C.H.), Emory University for supplies and personnel support, the US Department of Energy, Office of Science, Office of Basic Energy Sciences DE-FG02-02ER15377 for personnel support (C.C.) and equipment, and NSF CHE-1507932 for supplies, equipment, and structural characterization support.
Author information
Authors and Affiliations
Contributions
C.C., J.T., M.C.H, T.P, A.K.M., J.T.G, M.A.G and D.G.L. designed experiments, analysed data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2487 kb)
Rights and permissions
About this article
Cite this article
Chen, C., Tan, J., Hsieh, MC. et al. Design of multi-phase dynamic chemical networks. Nature Chem 9, 799–804 (2017). https://doi.org/10.1038/nchem.2737
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2737
This article is cited by
-
Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures
Nature Chemistry (2018)
-
Catalytic diversity in self-propagating peptide assemblies
Nature Chemistry (2017)