Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings

This article has been updated

Abstract

Bipleiophylline is a highly complex monoterpene indole alkaloid composed of two pleiocarpamine units anchored on an aromatic spacer platform. The synthesis of bipleiophylline is considered as a mountain to climb by the organic chemistry community. Here, a unified oxidative coupling protocol between indole derivatives and 2,3-dihydroxybenzoic acid, mediated by silver oxide, has been developed to produce the core of bipleiophylline. This method also allows the independent preparation of benzofuro[2,3-b]indolenine and isochromano[3,4-b]indolenine scaffolds, depending only on the nature of the aromatic platform used. The procedure has been applied to simple indole derivatives and to more challenging monoterpene indole alkaloids, thereby furnishing natural-product-like structures. The use of scarce pleiocarpamine as the starting indole allows the first syntheses of bipleiophylline and of its biosynthetic precursor, voacalgine A. The structure of the latter has been reassigned in the course of our investigations by 2D NMR and displays an isochromano[3,4-b]indolenine motif instead of a benzofuro[2,3-b]indolenine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of bipleiophylline and voacalgine A.
Figure 2: Access to the benzofuro[2,3-b]indolenine and to the isochromano[3,4-b]indolenine scaffolds.
Figure 3: DFT calculations for the isochromano[3,4-b]indolenine formation.
Figure 4: Synthesis of voacalgine A related products.
Figure 5: Access to the central polyheterocyclic core of 1.
Figure 6: Biomimetic assembly of voacalgine A and bipleiophylline with structure revision of voacalgine A.

Similar content being viewed by others

Change history

  • 09 March 2017

    In the version of this Article originally published, the e-mail address for Erwan Poupon was not correct. This has been corrected to erwan.poupon@u-psud.fr in the online versions of this Article.

References

  1. Kam, T.-S., Tan, S.-J., Ng, S.-W. & Komiyama, K. Bipleiophylline, an unprecedented cytotoxic bisindole alkaloid constituted from the bridging of two indole moieties by an aromatic spacer unit. Org. Lett. 10, 3749–3752 (2008).

    Article  CAS  Google Scholar 

  2. O'Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  CAS  Google Scholar 

  3. Kitajima, M . & Takayama, H. in The Alkaloids: Chemistry and Biology Vol. 76, 259–310 (Elsevier, 2016).

    Google Scholar 

  4. Hanessian, S., Giroux, S. & Merner, B. L. Design and Strategy in Organic Synthesis: From the Chiron Approach to Catalysis (Wiley-VCH, 2013).

    Google Scholar 

  5. Burke, D. E. & Le Quesne, P. W. Biomimetic synthesis of the bis-indole alkaloid villalstonine. J. Chem. Soc. Chem. Commun. 678–678 (1972).

  6. Bi, Y., Cook, J. M. & Le Quesne, P. W. A partial synthesis of the Alstonia bisindole alkaloid villalstonine. Tetrahedron Lett. 35, 3877–3878 (1994).

    Article  CAS  Google Scholar 

  7. Gan, T. & Cook, J. M. Enantiospecific total synthesis of (−)-anhydromacrosalhine-methine and partial synthesis of the antiamoebic bisindole alkaloid (−)-macrocarpamine. J. Org. Chem. 63, 1478–1483 (1998).

    Article  CAS  Google Scholar 

  8. Ziegler, R. E., Tan, S.-J., Kam, T.-S. & Porco, J. A. Development of an alkaloid–pyrone annulation: synthesis of pleiomaltinine. Angew. Chem. Int. Ed. 51, 9348–9351 (2012).

    Article  CAS  Google Scholar 

  9. Hirasawa, Y. et al. Voacalgines A–E, new indole alkaloids from Voacanga grandifolia. Tetrahedron 69, 10869–10875 (2013).

    Article  CAS  Google Scholar 

  10. Poupon, E. & Nay, B . Biomimetic Organic Synthesis (Wiley-VCH, 2011).

    Book  Google Scholar 

  11. Benayad, S., Ahamada, K., Lewin, G., Evanno, L. & Poupon, E . Preakuammicine: a long-awaited missing link in the biosynthesis of monoterpene indole alkaloids. Eur. J. Org. Chem. 1494–1499 (2016).

  12. Benayad, S., Beniddir, M. A., Evanno, L. & Poupon, E . Biomimetic assembly of leucoridine A. Eur. J. Org. Chem. 1894–1898 (2015).

  13. Skiredj, A. et al. Harnessing the intrinsic reactivity within the aplysinopsin series for the synthesis of intricate dimers: natural from start to finish. Synthesis 47, 2367–2376 (2015).

    Article  CAS  Google Scholar 

  14. Skiredj, A. et al. A Unified bioinspired ‘aplysinopsin cascade’: total synthesis of (±)-tubastrindole B and related biosynthetic congeners. Org. Lett. 16, 4980–4983 (2014).

    Article  CAS  Google Scholar 

  15. Skiredj, A. et al. Spontaneous biomimetic formation of (±)-dictazole B under irradiation with artificial sunlight. Angew. Chem. Int. Ed. 53, 6419–6424 (2014).

    Article  CAS  Google Scholar 

  16. Beaud, R., Guillot, R., Kouklovsky, C. & Vincent, G. FeCl3-mediated Friedel–Crafts hydroarylation with electrophilic N-acetyl indoles for the synthesis of benzofuroindolines. Angew. Chem. Int. Ed. 51, 12546–12550 (2012).

    Article  CAS  Google Scholar 

  17. Tomakinian, T., Guillot, R., Kouklovsky, C. & Vincent, G. Direct oxidative coupling of N-acetyl indoles and phenols for the synthesis of benzofuroindolines related to phalarine. Angew. Chem. Int. Ed. 53, 11881–11885 (2014).

    Article  CAS  Google Scholar 

  18. Denizot, N. et al. Bioinspired direct access to benzofuroindolines by oxidative [3 + 2] annulation of phenols and indoles. Org. Lett. 16, 5752–5755 (2014).

    Article  CAS  Google Scholar 

  19. Tomakinian, T., Kouklovsky, C. & Vincent, G. Investigation of the synthesis of benzofuroindolines from N-hydroxyindoles: an O-arylation/[3,3]-sigmatropic rearrangement sequence. Synlett 26, 1269–1275 (2015).

    Article  CAS  Google Scholar 

  20. Beaud, R. et al. The quest for an oxidative coupling of phenols and indoles towards benzofuroindolines: a two-stage approach. Synlett 26, 432–440 (2015).

    CAS  Google Scholar 

  21. Tomakinian, T., Guillot, R., Kouklovsky, C. & Vincent, G. Synthesis of benzofuro[3,2-b]indoline amines via deamination-interrupted Fischer indolization and their unexpected reactivity towards nucleophiles. Chem. Commun. 52, 5443–5446 (2016).

    Article  CAS  Google Scholar 

  22. Roche, S. P., Youte Tendoung, J.-J. & Tréguier, B. Advances in dearomatization strategies of indoles. Tetrahedron 71, 3549–3591 (2015).

    Article  CAS  Google Scholar 

  23. Denizot, N., Tomakinian, T., Beaud, R., Kouklovsky, C. & Vincent, G. Synthesis of 3-arylated indolines from dearomatization of indoles. Tetrahedron Lett. 56, 4413–4429 (2015).

    Article  CAS  Google Scholar 

  24. Nair, V., Menon, R. S., Biju, A. T. & Abhilash, K. G. 1,2-Benzoquinones in Diels–Alder reactions, dipolar cycloadditions, nucleophilic additions, multicomponent reactions and more. Chem. Soc. Rev. 41, 1050–1059 (2012).

    Article  CAS  Google Scholar 

  25. Ramsden, C. A. in Advances in Heterocyclic Chemistry Vol. 100 (ed. Katritzky, A. R.) 1–52 (Academic, 2010).

    Google Scholar 

  26. Nair, V. & Kumar, S. Recent developments in the cycloaddition reactions of o-benzoquinones. Synlett 1996, 1143–1147 (1996).

    Article  Google Scholar 

  27. Nematollahi, D. & Rafiee, M. Diversity in electrochemical oxidation of dihydroxybenzoic acids in the presence of acetylacetone. A green method for synthesis of new benzofuran derivatives. Green Chem. 7, 638–644 (2005).

    Article  CAS  Google Scholar 

  28. Nematollahi, D. & Dehdashtian, S. Electrochemical oxidation of catechol in the presence of indole: a facile and one-pot method for the synthesis of trisindolyl-o-benzoquinone. Tetrahedron Lett. 49, 645–649 (2008).

    Article  CAS  Google Scholar 

  29. Nematollahi, D., Dehdashtian, S. & Niazi, A. Electrochemical oxidation of some dihydroxybenzene derivatives in the presence of indole. J. Electroanal. Chem. 616, 79–86 (2008).

    Article  CAS  Google Scholar 

  30. Nematollahi, D. & Khoshsafar, H. Investigation of electrochemically induced Michael addition reactions. Oxidation of some dihydroxybenzene derivatives in the presence of azide ion. Tetrahedron 65, 4742–4750 (2009).

    Article  CAS  Google Scholar 

  31. Beiginejad, H., Nematollahi, D., Varmaghani, F., Bayat, M. & Salehzadeh, H. Efficient factors on the reaction rate and site-selectivity in sulfonylation of catechol and hydroquinone derivatives: experimental and theoretical studies. J. Electrochem. Soc. 160, G3001–G3007 (2013).

    Article  CAS  Google Scholar 

  32. Ellerbrock, P., Armanino, N., Ilg, M. K., Webster, R. & Trauner, D. An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat. Chem. 7, 879–882 (2015).

    Article  CAS  Google Scholar 

  33. Kraus, G. A. & Melekhov, A. Synthesis of 1,4-phenanthrenequinones via stannic chloride-induced cyclizations. J. Org. Chem. 64, 1720–1722 (1999).

    Article  CAS  Google Scholar 

  34. Fischer, A. & Henderson, G. Oxidation of hydroquinones, catechols, and phenols using ceric ammonium nitrate and ammonium dichromate coated on silica: an efficient and convenient preparation of quinones. Synthesis 1985, 641–643 (1985).

    Article  Google Scholar 

  35. Borrmann, A. et al. Strain-promoted oxidation-controlled cyclooctyne–1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation. Bioconjug. Chem. 26, 257–261 (2015).

    Article  CAS  Google Scholar 

  36. Nicolaou, K. C., Dalby, S. M., Li, S., Suzuki, T. & Chen, D. Y.-K. Total synthesis of (+)-haplophytine. Angew. Chem. Int. Ed. 48, 7616–7620 (2009).

    Article  CAS  Google Scholar 

  37. Morgan, L. R. Dimerization of 3-carboxybenzoquinone-1,2. J. Org. Chem. 27, 2634–2635 (1962).

    Article  CAS  Google Scholar 

  38. Omote, Y., Tomotake, A. & Kashima, C. Trapping of dopachrome with 2,3-dihydro-1H-cyclopent[b]indole. Tetrahedron Lett. 25, 2993–2994 (1984).

    Article  CAS  Google Scholar 

  39. Omote, Y., Tomotake, A. & Kashima, C . Reaction of 1,2-benzoquinones with enamines. J. Chem. Soc. Perkin. 1, 151–156 (1988).

    Article  Google Scholar 

  40. Nair, V. & Kumar, S. Hetero Diels–Alder reaction of o-benzoquinones with 2,5-dimethylpyrrole: synthesis of novel benzodioxins. Synth. Commun. 26, 217–224 (1996).

    Article  CAS  Google Scholar 

  41. Kuboki, A., Yamamoto, T., Taira, M., Arishige, T. & Ohira, S. Total synthesis of (±)-nitidanin and novel procedures for determination of the location of the side chains on 1,4-benzodioxane. Tetrahedron Lett. 48, 771–774 (2007).

    Article  CAS  Google Scholar 

  42. Nicolaou, K. C., Wang, J. & Tang, Y. Synthesis of the sporolide ring framework through a cascade sequence involving an intramolecular [4 + 2] cycloaddition reaction of an o-quinone. Angew. Chem. Int. Ed. 47, 1432–1435 (2008).

    Article  CAS  Google Scholar 

  43. Takuwa, A., Kai, R., Kawasaki, K., Nishigaichi, Y. & Iwamoto, H . New formal [3 + 2] photoaddition of vinyl ethers to o-benzoquinones. Chem. Commun. 703–704 (1996).

  44. Nair, V., Rajesh, C., Dhanya, R. & Rath, N. P. Formal dipolar cycloaddition of allylsilanes to o-quinonoid compounds: a convenient route to benzofused and spirofused heterocycles. Tetrahedron Lett. 43, 5349–5351 (2002).

    Article  CAS  Google Scholar 

  45. Jung, M. E. & Perez, F. Synthesis of 2-substituted 7-hydroxybenzofuran-4-carboxylates via addition of silyl enol ethers to o-benzoquinone esters. Org. Lett. 11, 2165–2167 (2009).

    Article  CAS  Google Scholar 

  46. Burgett, A. W. G., Li, Q., Wei, Q. & Harran, P. G. A Concise and flexible total synthesis of (−)-diazonamide A. Angew. Chem. Int. Ed. 42, 4961–4966 (2003).

    Article  CAS  Google Scholar 

  47. Ding, H. et al. Electrolytic macrocyclizations: scalable synthesis of a diazonamide-based drug development candidate. Angew. Chem. Int. Ed. 54, 4818–4822 (2015).

    Article  CAS  Google Scholar 

  48. Zhao, J.-C., Yu, S.-M., Liu, Y. & Yao, Z.-J. Biomimetic synthesis of ent-(−)-azonazine and stereochemical reassignment of natural product. Org. Lett. 15, 4300–4303 (2013).

    Article  CAS  Google Scholar 

  49. Koval, I. A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem. Soc. Rev. 35, 814–840 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge, the ANR (ANR-15-CE29-0001 and ANR-12-JS07-0002), the Université Paris-Sud and the CNRS for financial support. J.-P. Baltaze (ICMMO), J.-C. Jullian (BioCIS) and C. Dejean (BioCIS) are gratefully acknowledged for NMR assistance. M. Litaudon (ICSN) and the “Extractothèque” of ICSN are gratefully acknowledged for their support in collecting the plant material. The authors are grateful to the North Province of New Caledonia, which facilitated the field investigation. T.-S. Kam is gratefully acknowledged for spectra of bipleiophylline.

Author information

Authors and Affiliations

Authors

Contributions

L.E., E.P. and G.V. conceived the project. N.D., D. L., L.E. and G.V. performed the synthetic experimental work. N.D. and D.L. contributed equally. G.B. performed the DFT calculations, K.A. performed prospective experiments. V.D. collected bark of Alstonia balansae. D.L., E.O.N. and V.T. purified pleiocarpamine. C.K. advised on synthetic aspects of the work. M.A.B. advised on the extraction aspects of the work. J.F.G. recorded 600 MHz NMR spectra. R.G. resolved the crystal structures. K.L. developed all conditions for purifications by preparative HPLC and performed analytical HPLC. L.E., E.P. and G.V. wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Erwan Poupon, Laurent Evanno or Guillaume Vincent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6197 kb)

Supplementary information

Crystallographic data for compound 8b (CIF 1182 kb)

Supplementary information

Crystallographic data for compound 9a (CIF 3127 kb)

Supplementary information

Crystallographic data for compound 10a (CIF 273 kb)

Supplementary information

Crystallographic data for compound 18a (CIF 1821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachkar, D., Denizot, N., Bernadat, G. et al. Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings. Nature Chem 9, 793–798 (2017). https://doi.org/10.1038/nchem.2735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing