Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture

Abstract

Macromolecular architecture plays a pivotal role in determining the properties of polymers. When designing polymers for specific applications, it is not only the size of a macromolecule that must be considered, but also its shape. In most cases, the topology of a polymer is a static feature that is inalterable once synthesized. Using reversible-covalent chemistry to prompt the disconnection of chemical bonds and the formation of new linkages in situ, we report polymers that undergo dramatic topological transformations via a process we term macromolecular metamorphosis. Utilizing this technique, a linear amphiphilic block copolymer or hyperbranched polymer undergoes ‘metamorphosis’ into comb, star and hydrophobic block copolymer architectures. This approach was extended to include a macroscopic gel which transitioned from a densely and covalently crosslinked network to one with larger distances between the covalent crosslinks when heated. These architectural transformations present an entirely new approach to ‘smart’ materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transformation of an amphiphilic block copolymer and a segmented hyperbranched polymer into various macromolecular architectures via diene displacement reactions.
Figure 2: Theoretical rationalization of MalOH-based DA reactions and model reactions for the diene displacement approach.
Figure 3: Various reaction pathways of thermally reversible amphiphilic block copolymers.
Figure 4: Topological transformation from linear amphiphilic block copolymer to comb copolymer.
Figure 5: Gel expansion metamorphosis driven by diene displacement.

References

  1. Kafka, F. & Appelbaum, S. The Metamorphosis and Other Stories (Dover, 1996).

    Google Scholar 

  2. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  3. Ringsdorf, H. Hermann Staudinger and the future of polymer research jubilees—beloved occasions for cultural piety. Angew. Chem. Int. Ed. 43, 1064–1076 (2004).

    Article  CAS  Google Scholar 

  4. Staudinger, H. Über Polymerisation. Ber. Deut. Chem. Ges. 53, 1073–1085 (1920).

    Article  Google Scholar 

  5. Lutz, J. F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149–1238149 (2013).

    Article  Google Scholar 

  6. Kang, J. et al. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  CAS  Google Scholar 

  7. Webster, O. W. Living polymerization methods. Science 251, 887–893 (1991).

    Article  CAS  Google Scholar 

  8. Matyjaszewski, K. Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog. Polym. Sci. 30, 858–875 (2005).

    Article  CAS  Google Scholar 

  9. Matyjaszewski, K. Architecturally complex polymers with controlled heterogeneity. Science 333, 1104–1105 (2011).

    Article  CAS  Google Scholar 

  10. Everaers, R. et al. Rheology and microscopic topology of entangled polymeric liquids. Science 303, 823–826 (2004).

    Article  CAS  Google Scholar 

  11. Pernot, H., Baumert, M., Court, F. & Leibler, L. Design and properties of co-continuous nanostructured polymers by reactive blending. Nat. Mater. 1, 54–58 (2002).

    Article  CAS  Google Scholar 

  12. Mackay, M. E. et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2, 762–766 (2003).

    Article  CAS  Google Scholar 

  13. Ruzette, A.-V. & Leibler, L. Block copolymers in tomorrow's plastics. Nat. Mater. 4, 19–31 (2005).

    Article  CAS  Google Scholar 

  14. Jain, S. & Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science 300, 460–464 (2003).

    Article  CAS  Google Scholar 

  15. Zhang, S. et al. Self-assembly of amphiphilic Janus dendrimers into uniform onion-like dendrimersomes with predictable size and number of bilayers. Proc. Natl Acad. Sci. USA 111, 9058–9063 (2014).

    Article  CAS  Google Scholar 

  16. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article  CAS  Google Scholar 

  17. Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J.-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 3, 234–238 (2011).

    Article  CAS  Google Scholar 

  18. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  19. Blum, A. P. et al. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 137, 2140–2154 (2015).

    Article  CAS  Google Scholar 

  20. Billiet, S. et al. Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nat. Chem. 6, 815–821 (2014).

    Article  CAS  Google Scholar 

  21. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  22. Kotha, S. & Banerjee, S . Recent developments in the retro-Diels–Alder reaction. RSC Adv. 7642–7666 (2013).

  23. Reutenauer, P. et al. Room temperature dynamic polymers based on Diels–Alder chemistry. Chem. Eur. J. 15, 1893–1900 (2009).

    Article  CAS  Google Scholar 

  24. Roy, N. & Lehn, J.-M. Dynamic covalent chemistry: a facile and room-temperature, reversible, Diels–Alder reaction between anthracene derivatives and N-phenyltriazolinedione. Chem. Asian J. 6, 2419–2425 (2011).

    Article  CAS  Google Scholar 

  25. Zhang, J. et al. Self-healable and recyclable triple-shape PPDO–PTMEG co-network constructed through thermoreversible Diels–Alder reaction. Polym. Chem. 3, 1390–1393 (2012).

    Article  CAS  Google Scholar 

  26. Liu, Y.-L. & Chuo, T.-W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 4, 2194–2205 (2013).

    Article  CAS  Google Scholar 

  27. Bapat, A. P. et al. Dynamic-covalent nanostructures prepared by Diels–Alder reactions of styrene–maleic anhydride-derived copolymers obtained by one-step cascade block copolymerization. Polym. Chem. 3, 3112–3120 (2012).

    Article  CAS  Google Scholar 

  28. Gandini, A. The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38, 1–29 (2013).

    Article  CAS  Google Scholar 

  29. Gacal, B. et al. Anthracene−maleimide-based Diels–Alder ‘click chemistry’ as a novel route to graft copolymers. Macromolecules 39, 5330–5336 (2006).

    Article  CAS  Google Scholar 

  30. Li, J. et al. Mechanophore activation at heterointerfaces. J. Am. Chem. Soc. 136, 15925–15928 (2014).

    Article  CAS  Google Scholar 

  31. Li, H. et al. Promoting mechanochemistry of covalent bonds by noncovalent micellar aggregation. ACS Macro Lett. 5, 995–998 (2016).

    Article  CAS  Google Scholar 

  32. Sun, H., Kabb, C. P. & Sumerlin, B. S. Thermally-labile segmented hyperbranched copolymers: using reversible-covalent chemistry to investigate the mechanism of self-condensing vinyl copolymerization. Chem. Sci. 5, 4646–4655 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation (DMR-1606410).

Author information

Authors and Affiliations

Authors

Contributions

H.S., A.P.B and B.S.S. conceived and designed the experiments; H.S., C.P.K. and Y.D. performed the experiments; I.G. helped perform and analyse DOSY experiments; H.S., C.P.K. and M.R.H. conducted theoretical calculations; H.S., C.P.K. and M.R.H. analysed and discussed the data; H.S. and C.P.K. prepared all the figures; H.S., B.S.S., C.P.K. and M.R.H. co-wrote the paper.

Corresponding author

Correspondence to Brent S. Sumerlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6597 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Kabb, C., Dai, Y. et al. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nature Chem 9, 817–823 (2017). https://doi.org/10.1038/nchem.2730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing