Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of electron-transfer-mediated decay in aqueous solution

Abstract

Photoionization is at the heart of X-ray photoelectron spectroscopy (XPS), which gives access to important information on a sample's local chemical environment. Local and non-local electronic decay after photoionization—in which the refilling of core holes results in electron emission from either the initially ionized species or a neighbour, respectively—have been well studied. However, electron-transfer-mediated decay (ETMD), which involves the refilling of a core hole by an electron from a neighbouring species, has not yet been observed in condensed phase. Here we report the experimental observation of ETMD in an aqueous LiCl solution by detecting characteristic secondary low-energy electrons using liquid-microjet soft XPS. Experimental results are interpreted using molecular dynamics and high-level ab initio calculations. We show that both solvent molecules and counterions participate in the ETMD processes, and different ion associations have distinctive spectral fingerprints. Furthermore, ETMD spectra are sensitive to coordination numbers, ion–solvent distances and solvent arrangement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The most relevant ETMD processes in LiCl aqueous solution.
Figure 2: Experimental and simulated ETMD spectra of LiCl aqueous solutions.
Figure 3: Radial distribution functions for LiCl aqueous solutions.

Similar content being viewed by others

References

  1. Howell, R. W. Auger processes in the 21st century. Int. J. Radiat. Biol. 84, 959–975 (2008).

    Article  CAS  Google Scholar 

  2. Petit, M. et al. X-ray photolysis to release ligands from caged reagents by an intramolecular antenna sensitive to magnetic resonance imaging. Angew. Chem. Int. Ed. 50, 9708–9711 (2011).

    Article  CAS  Google Scholar 

  3. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997).

    Article  CAS  Google Scholar 

  4. Averbukh, V. et al. Interatomic electronic decay processes in singly and multiply ionized clusters. J. Electron Spectrosc. Relat. Phenom. 183, 36–47 (2011).

    Article  CAS  Google Scholar 

  5. Hergenhahn, U. Production of low kinetic energy electrons and energetic ion pairs by intermolecular Coulombic decay. Int. J. Radiat. Biol. 88, 871–883 (2012).

    Article  CAS  Google Scholar 

  6. Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008).

    Article  CAS  Google Scholar 

  7. Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).

    Article  CAS  Google Scholar 

  8. Slavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X-ray irradiated liquid water. J. Am. Chem. Soc. 136, 18170–18176 (2014).

    Article  Google Scholar 

  9. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139–142 (2010).

    Article  CAS  Google Scholar 

  10. Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).

    Article  CAS  Google Scholar 

  11. Zobeley, J., Santra, R. & Cederbaum, L. S. Electronic decay in weakly bound heteroclusters: energy transfer versus electron transfer. J. Chem. Phys. 115, 5076–5088 (2001).

    Article  CAS  Google Scholar 

  12. Stumpf, V., Kryzhevoi, N. V., Gokhberg, K. & Cederbaum, L. S. Enhanced one-photon double ionization of atoms and molecules in an environment of different species. Phys. Rev. Lett. 112, 193001 (2014).

    Article  CAS  Google Scholar 

  13. LaForge, A. C. et al. Enhanced ionization of embedded clusters by electron-transfer-mediated decay in helium nanodroplets. Phys. Rev. Lett. 116, 203001 (2016).

    Article  CAS  Google Scholar 

  14. Förstel, M., Mucke, M., Arion, T., Bradshaw, A. M. & Hergenhahn, U. Autoionization mediated by electron transfer. Phys. Rev. Lett. 106, 33402 (2011).

    Article  Google Scholar 

  15. Sakai, K. et al. Electron-transfer-mediated decay and interatomic Coulombic decay from the triply ionized states in argon dimers. Phys. Rev. Lett. 106, 33401 (2011).

    Article  CAS  Google Scholar 

  16. Yan, S. et al. Observation of interatomic Coulombic decay and electron-transfer- mediated decay in high-energy electron-impact ionization of Ar2 . Phys. Rev. A 88, 42712 (2013).

    Article  Google Scholar 

  17. Pernpointner, M., Kryzhevoi, N. V. & Urbaczek, S. Possible electronic decay channels in the ionization spectra of small clusters composed of Ar and Kr: a four-component relativistic treatment. J. Chem. Phys. 129, 24304 (2008).

    Article  Google Scholar 

  18. Stumpf, V., Kolorenč, P., Gokhberg, K. & Cederbaum, L. S. Efficient pathway to neutralization of multiply charged ions produced in Auger processes. Phys. Rev. Lett. 110, 258302 (2013).

    Article  CAS  Google Scholar 

  19. Müller, I. B. & Cederbaum, L. S. Electronic decay following ionization of aqueous Li+ microsolvation clusters. J. Chem. Phys. 122, 94305 (2005).

    Article  Google Scholar 

  20. Stumpf, V., Gokhberg, K. & Cederbaum, L. S. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 8, 237–241 (2016).

    Article  CAS  Google Scholar 

  21. Weber, R. et al. Photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation. J. Phys. Chem. B 108, 4729–4736 (2004).

    Article  CAS  Google Scholar 

  22. Bouazizi, S. & Nasr, S. Concentration effects on aqueous lithium chloride solutions. Molecular dynamics simulations and X-ray scattering studies. J. Mol. Liq. 197, 77–83 (2014).

    Article  CAS  Google Scholar 

  23. Petit, L., Vuilleumier, R., Maldivi, P. & Adamo, C. Ab initio molecular dynamics study of a highly concentrated LiCl aqueous solution. J. Chem. Theory Comput. 4, 1040–1048 (2008).

    Article  CAS  Google Scholar 

  24. Harsanyi, I. & Pusztai, L. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data. J. Chem. Phys. 137, 204503 (2012).

    Article  CAS  Google Scholar 

  25. Pluhařová, E., Fischer, H. E., Mason, P. E. & Jungwirth, P. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Mol. Phys. 112, 1230–1240 (2014).

    Article  Google Scholar 

  26. Pluhařová, E., Mason, P. E. & Jungwirth, P. Ion pairing in aqueous lithium salt solutions with monovalent and divalent counter-anions. J. Phys. Chem. A 117, 11766–11773 (2013).

    Article  Google Scholar 

  27. Aragones, J. L., Rovere, M., Vega, C. & Gallo, P. Computer simulation study of the structure of LiCl aqueous solutions: test of non-standard mixing rules in the ion interaction. J. Phys. Chem. B 118, 7680–7691 (2014).

    Article  CAS  Google Scholar 

  28. Xu, J.-J., Yi, H.-B., Li, H.-J. & Chen, Y. Ionic solvation and association in LiCl aqueous solution: a density functional theory, polarised continuum model and molecular dynamics investigation. Mol. Phys. 112, 1710–1723 (2014).

    Article  CAS  Google Scholar 

  29. Öhrwall, G. et al.. Charge dependence of solvent-mediated intermolecular Coster−Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057–17061 (2010).

    Article  Google Scholar 

  30. Hefter, G . When spectroscopy fails: the measurement of ion pairing. Pure Appl. Chem. 78, 1571–1586 (2006).

    Article  CAS  Google Scholar 

  31. van der Vegt, N. F. A. et al. Water-mediated ion pairing: occurrence and relevance. Chem. Rev. 116, 7626–7641 (2016).

    Article  CAS  Google Scholar 

  32. Näslund, L.-Å. et al. Direct evidence of orbital mixing between water and solvated transition-metal ions: an oxygen 1s XAS and DFT study of aqueous systems. J. Phys. Chem. A 107, 6869–6876 (2003).

    Article  Google Scholar 

  33. Jiang, B. et al. The anion effect on Li+ ion coordination structure in ethylene carbonate solutions. J. Phys. Chem. Lett. 7, 3554–3559 (2016).

    Article  CAS  Google Scholar 

  34. Seidel, R., Thürmer, S. & Winter, B. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J. Phys. Chem. Lett. 2, 633–641 (2011).

    Article  CAS  Google Scholar 

  35. Berendsen, H., Grigera, J. & Straatsma, T. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  36. Leontyev, I. & Stuchebrukhov, A. Accounting for electronic polarization in non- polarizable force fields. Phys. Chem. Chem. Phys. 13, 2613–2626 (2011).

    Article  CAS  Google Scholar 

  37. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007).

    Article  Google Scholar 

  38. Essmann, U. et al.. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  39. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  Google Scholar 

  40. Schirmer, J. & Barth, A. Higher-order approximations for the particle-particle propagator. Z. Phys. A 317, 267–279 (1984).

    Article  CAS  Google Scholar 

  41. Velkov, Y., Miteva, T., Sisourat, N. & Schirmer, J. Intermediate state representation approach to physical properties of dicationic states. J. Chem. Phys. 135, 154113 (2011).

    Article  Google Scholar 

  42. Dunning, T. H. Jr Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 53, 2823–2833 (1970).

    Article  CAS  Google Scholar 

  43. Kendall, R., Dunning, T. & Harrison, R. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

    Article  CAS  Google Scholar 

  44. Tarantelli, F., Sgamellotti, A. & Cederbaum, L. S. Many dicationic states and two-hole population analysis as a bridge to Auger spectra: strong localization phenomena in BF3 . J. Chem. Phys. 94, 523–532 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.M. and P.S. thank Czech Science Foundation for support (project number 13-34168S). N.V.K. and L.S.C. gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft. L.S.C also gratefully acknowledges funding from the European Research Council (Advanced Investigator Grant no. 692657). I.U., M.N.P. and B.W. gratefully acknowledge support from the Deutsche Forschungsgemeinschaft (DFG Research Unit FOR 1789). The authors thank the BESSY II staff for assistance during the beamtimes. We thank E. Pluhařová for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

I.U., R.S., S.T., M.N.P. and B.W. conceived, designed and performed the experiments, and analysed the experimental data. E.M. and P.S. performed and analysed the molecular dynamics simulations. N.V.K. computed the theoretical ETMD spectra and analysed them. B.W., P.S. and N.V.K. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Petr Slavíček, Bernd Winter or Nikolai V. Kryzhevoi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, I., Seidel, R., Thürmer, S. et al. Observation of electron-transfer-mediated decay in aqueous solution. Nature Chem 9, 708–714 (2017). https://doi.org/10.1038/nchem.2727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing