Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy

Abstract

Unveiling the nuclear motions of photoreceptor proteins in action is a crucial goal in protein science in order to understand their elaborate mechanisms and how they achieve optimal selectivity and efficiency. Previous studies have provided detailed information on the structures of intermediates that appear during the later stages (>ns) of such photoreception cycles, yet the initial events immediately after photoabsorption remain unclear because of experimental challenges in monitoring nuclear rearrangements on ultrafast timescales, including protein-specific low-frequency motions. Using time-domain Raman probing with sub-7-fs pulses, we obtain snapshot vibrational spectra of photoactive yellow protein and a mutant with high sensitivity, providing insights into the key responses that drive photoreception. Our data show a drastic intensity drop of the excited-state marker band at 135 cm−1 within a few hundred femtoseconds, suggesting a rapid weakening of the hydrogen bond that anchors the chromophore. We also track formation of the first ground-state intermediate over the first few picoseconds and fully characterize its vibrational structure, revealing a substantially-twisted cis conformation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural representation of PYP and its photocycle.
Figure 2: Broadband transient absorption data of PYP.
Figure 3: Time-resolved impulsive stimulated Raman data of PYP.
Figure 4: Comparison of the time-resolved impulsive stimulated Raman data of wild-type PYP and the E46Q mutant.
Figure 5: Time-resolved impulsive stimulated Raman data of the I0 intermediate.

Accession codes

Primary accessions

Protein Data Bank

References

  1. Meyer, T. E. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim. Biophys. Acta. 806, 175–183 (1985).

    Article  CAS  Google Scholar 

  2. Genick, U. K. et al. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475 (1997).

    Article  CAS  Google Scholar 

  3. Rubinstenn, G. et al. Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Nat. Struct. Mol. Biol. 5, 568–570 (1998).

    Article  CAS  Google Scholar 

  4. Groot, M. L. et al. Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy. Biochemistry 42, 10054–10059 (2003).

    Article  CAS  Google Scholar 

  5. Heyne, K. et al. Structural evolution of the chromophore in the primary stages of trans/cis isomerization in photoactive yellow protein. J. Am. Chem. Soc. 127, 18100–18106 (2005).

    Article  CAS  Google Scholar 

  6. van Wilderen, L. J. G. W. et al. Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein. Proc. Natl Acad. Sci. USA 103, 15050–15055 (2006).

    Article  CAS  Google Scholar 

  7. Nakamura, R., Hamada, N., Abe, K. & Yoshizawa, M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116, 14768–14775 (2012).

    Article  CAS  Google Scholar 

  8. Creelman, M., Kumauchi, M., Hoff, W. D. & Mathies, R. A. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 118, 659–667 (2013).

    Article  Google Scholar 

  9. Banin, U. & Ruhman, S. Ultrafast vibrational dynamics of nascent diiodide fragments studied by femtosecond transient resonance impulsive stimulated Raman scattering. J. Chem. Phys 99, 9318–9321 (1993).

    Article  CAS  Google Scholar 

  10. Fujiyoshi, S., Takeuchi, S. & Tahara, T. Time-resolved impulsive stimulated Raman scattering from excited-state polyatomic molecules in solution. J. Phys. Chem. A 107, 494–500 (2003).

    Article  CAS  Google Scholar 

  11. Cerullo, G. et al. Time domain investigation of excited-state vibrational motion in organic molecules by stimulated emission pumping. J. Phys. Chem. A 107, 8339–8344 (2003).

    Article  CAS  Google Scholar 

  12. Takeuchi, S. et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008).

    Article  CAS  Google Scholar 

  13. Liebel, M. & Kukura, P. Broad-band impulsive vibrational spectroscopy of excited electronic states in the time domain. J. Phys. Chem. Lett. 4, 1358–1364 (2013).

    Article  CAS  Google Scholar 

  14. Kraack, J. P., Wand, A., Buckup, T., Motzkus, M. & Ruhman, S. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys. Chem. Chem. Phys. 15, 14487–14501 (2013).

    Article  CAS  Google Scholar 

  15. Fujisawa, T., Kuramochi, H., Hosoi, H., Takeuchi, S. & Tahara, T. Role of coherent low-frequency motion in excited-state proton transfer of green fluorescent protein studied by time-resolved impulsive stimulated Raman spectroscopy. J. Am. Chem. Soc. 138, 3942–3945 (2016).

    Article  CAS  Google Scholar 

  16. Kuramochi, H., Takeuchi, S. & Tahara, T. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: apparatus and applications. Rev. Sci. Instrum. 87, 043107 (2016).

    Article  Google Scholar 

  17. Larsen, D. S. et al. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump–dump–probe spectroscopy. Biophys. J. 87, 1858–1872 (2004).

    Article  CAS  Google Scholar 

  18. Kuramochi, H., Takeuchi, S. & Tahara, T. Ultrafast structural evolution of photoactive yellow protein chromophore revealed by ultraviolet resonance femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 3, 2025–2029 (2012).

    Article  CAS  Google Scholar 

  19. Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    Article  CAS  Google Scholar 

  20. Mataga, N. et al. Ultrafast photoinduced reaction dynamics of photoactive yellow protein (PYP) observation of coherent oscillations in the femtosecond fluorescence decay dynamics. Chem. Phys. Lett. 352, 220–225 (2002).

    Article  CAS  Google Scholar 

  21. Nakamura, R., Hamada, N., Ichida, H., Tokunaga, F. & Kanematsu, Y. Coherent oscillations in ultrafast fluorescence of photoactive yellow protein. J. Chem. Phys. 127, 215102 (2007).

    Article  Google Scholar 

  22. Chosrowjan, H. et al. Low-frequency vibrations and their role in ultrafast photoisomerization reaction dynamics of photoactive yellow protein. J. Phys. Chem. B 108, 2686–2698 (2004).

    Article  CAS  Google Scholar 

  23. Yu, X. & Leitner, D. M. Chromophore vibrations during isomerization of photoactive yellow protein: analysis of normal modes and energy transfer. Chem. Phys. Lett. 391, 181–186 (2004).

    Article  CAS  Google Scholar 

  24. Adesokan, A. A., Pan, D., Fredj, E., Mathies, R. A. & Gerber, R. B. Anharmonic vibrational calculations modeling the Raman spectra of intermediates in the photoactive yellow protein (PYP) photocycle. J. Am. Chem. Soc. 129, 4584–4594 (2007).

    Article  CAS  Google Scholar 

  25. Gnanasekaran, R. & Leitner, D. M. Dielectric response and vibrational energy relaxation in photoactive yellow protein: a molecular dynamics simulation study. Chem. Phys. Lett. 516, 102–105 (2011).

    Article  CAS  Google Scholar 

  26. Mizuno, M., Kamikubo, H., Kataoka, M. & Mizutani, Y. Changes in the hydrogen-bond network around the chromophore of photoactive yellow protein in the ground and excited states. J. Phys. Chem. B 115, 9306–9310 (2011).

    Article  CAS  Google Scholar 

  27. Yamaguchi, S. et al. Low-barrier hydrogen bond in photoactive yellow protein. Proc. Natl Acad. Sci. USA 106, 440–444 (2009).

    Article  CAS  Google Scholar 

  28. Premvardhan, L. L., van der Horst, M. A., Hellingwerf, K. J. & van Grondelle, R. Stark spectroscopy on photoactive yellow protein, E46Q, and a nonisomerizing derivative, probes photo-induced charge motion. Biophys. J. 84, 3226–3239 (2003).

    Article  CAS  Google Scholar 

  29. Lochbrunner, S., Wurzer, A. J. & Riedle, E. Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2'-hydroxyphenyl)benzothiazole. J. Chem. Phys. 112, 10699–10702 (2000).

    Article  CAS  Google Scholar 

  30. Takeuchi, S. & Tahara, T. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump–probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. J. Phys. Chem. A 109, 10199–10207 (2005).

    Article  CAS  Google Scholar 

  31. Unno, M., Kumauchi, M., Tokunaga, F. & Yamauchi, S. Vibrational assignment of the 4-hydroxycinnamyl chromophore in photoactive yellow protein. J. Phys. Chem. B 111, 2719–2726 (2007).

    Article  CAS  Google Scholar 

  32. Unno, M., Kumauchi, M., Hamada, N., Tokunaga, F. & Yamauchi, S. Resonance Raman evidence for two conformations involved in the L intermediate of photoactive yellow protein. J. Biol. Chem. 279, 23855–23858 (2004).

    Article  CAS  Google Scholar 

  33. Schotte, F. et al. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proc. Natl Acad. Sci. USA 109, 19256–19261 (2012).

    Article  CAS  Google Scholar 

  34. Jung, Y. O. et al. Volume-conserving transcis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nat. Chem. 5, 212–220 (2013).

    Article  CAS  Google Scholar 

  35. Kaila, V. R. I., Schotte, F., Cho, H. S., Hummer, G. & Anfinrud, P. A. Contradictions in X-ray structures of intermediates in the photocycle of photoactive yellow protein. Nat. Chem. 6, 258–259 (2014).

    Article  CAS  Google Scholar 

  36. Jung, Y. O. et al. Reply to ‘Contradictions in X-ray structures of intermediates in the photocycle of photoactive yellow protein’. Nat. Chem. 6, 259–260 (2014).

    Article  CAS  Google Scholar 

  37. Mihara, K., Hisatomi, O., Imamoto, Y., Kataoka, M. & Tokunaga, F. Functional expression and site-directed mutagenesis of photoactive yellow protein. J. Biochem. 121, 876–880 (1997).

    Article  CAS  Google Scholar 

  38. Iwamura, M., Watanabe, H., Ishii, K., Takeuchi, S. & Tahara, T. Coherent nuclear dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex. J. Am. Chem. Soc. 133, 7728–7736 (2011).

    Article  CAS  Google Scholar 

  39. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Numbers JP16H04102 to S.T., JP25102003 to H.Ka., JP24247030 to M.K. and JP25104005 to T.T. The computations were performed using Research Center for Computational Science, Okazaki, Japan. H.Ku. was supported by RIKEN Special Postdoctoral Researchers (SPDR) programme.

Author information

Authors and Affiliations

Authors

Contributions

H.Ku., S.T. and T.T. conceived and designed the research. H.Ku. performed the experiment and analysed the data. K.Y., H.Ka. and M.K. expressed and purified the samples. H.Ku., S.T. and T.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Satoshi Takeuchi or Tahei Tahara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1950 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuramochi, H., Takeuchi, S., Yonezawa, K. et al. Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nature Chem 9, 660–666 (2017). https://doi.org/10.1038/nchem.2717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing