Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional synthetic model of mono-iron hydrogenase featuring an anthracene scaffold

Abstract

Mono-iron hydrogenase was the third type of hydrogenase discovered. Its Lewis acidic iron(II) centre promotes the heterolytic cleavage of the H–H bond and this non-redox H2 activation distinguishes it from the well-studied dinuclear [FeFe] and [NiFe] hydrogenases. Cleavage of the H–H bond is followed by hydride transfer to the enzyme's organic substrate, H4MPT+, which serves as a CO2 ‘carrier’ in methanogenic pathways. Here we report a scaffold-based synthetic approach by which to model mono-iron hydrogenase using an anthracene framework, which supports a biomimetic fac-C,N,S coordination motif to an iron(II) centre. This arrangement includes the biomimetic and organometallic Fe–C σ bond, which enables bidirectional activity reminiscent of the native enzyme: the complex activates H2 under mild conditions, and catalyses C–H hydride abstraction plus H2 generation from a model substrate. Notably, neither H2 activation nor C–H hydride abstraction was observed in the analogous complex with a pincer-type mer-C,N,S ligation, emphasizing the importance of the fac-C,N,S-iron(II) motif in promoting enzyme-like reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of enzyme active site and model complexes.
Figure 2: Synthesis and DFT-optimized structure of compound 1, and the structure of 2 determined by X-ray crystallography.
Figure 3: C–H hydride abstraction from imidazolidine and H2 evolution mediated by complex 3.
Figure 4: Hydride abstraction from imidazolidine by complex 3 monitored by 1H NMR.
Figure 5: D2 gas activation by complex 3 evidenced by NH → ND exchange in complex 3.
Figure 6: Deuteride (D) transfer from D2 to H+ and formation of Fe–D species.

Similar content being viewed by others

References

  1. Zhou, J., Hu, Z., Münck, E. & Holm, R. H. The cuboidal Fe3S4 cluster: synthesis, stability, and geometric and electronic structures in a non-protein environment. J. Am. Chem. Soc. 118, 1966–1980 (1996).

    Article  CAS  Google Scholar 

  2. Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    Article  CAS  Google Scholar 

  3. Wright, R. J., Lim, C. & Tilley, T. D. Diiron proton reduction catalysts possessing electron-rich and electron-poor naphthalene-1,8-dithiolate ligands. Chem. Eur. J. 15, 8518–8525 (2009).

    Article  CAS  Google Scholar 

  4. Lee, Y. et al. Dinitrogen activation upon reduction of a triiron(II) complex. Angew. Chem. Int. Ed. 54, 1499–1503 (2015).

    Article  CAS  Google Scholar 

  5. Teramoto, Y., Kubo, K., Kume, S. & Mizuta, T. Formation of a hexacarbonyl diiron complex having a naphthalene-1,8-bis(phenylphosphido) bridge and the electrochemical behavior of its derivatives. Organometallics 32, 7014–7024 (2013).

    Article  CAS  Google Scholar 

  6. Rauchfuss, T. B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 48, 2107–2116 (2015).

    Article  CAS  Google Scholar 

  7. Shima, S. et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321, 572–575 (2008).

    Article  CAS  Google Scholar 

  8. Hiromoto, T. et al. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett. 583, 585–590 (2009).

    Article  CAS  Google Scholar 

  9. Yang, X. & Hall, M. B. Trigger mechanism for the catalytic hydrogen activation by monoiron (iron−sulfur cluster-free) hydrogenase. J. Am. Chem. Soc. 130, 14036–14037 (2008).

    Article  CAS  Google Scholar 

  10. Yang, X. & Hall, M. B. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe−Hδ−···Hδ+−O, bond and methenyl-H4MPT+ triggered hydride transfer. J. Am. Chem. Soc. 131, 10901–10908 (2009).

    Article  CAS  Google Scholar 

  11. Gubler, J., Finkelmann, A. R. & Reiher, M. Theoretical 57Fe Mössbauer spectroscopy for structure elucidation of [Fe] hydrogenase active site intermediates. Inorg. Chem. 52, 14205–14215 (2013).

    Article  CAS  Google Scholar 

  12. Finkelmann, A. R., Senn, H. M. & Reiher, M. Hydrogen-activation mechanism of [Fe] hydrogenase revealed by multi-scale modeling. Chem. Sci. 5, 4474–4482 (2014).

    Article  CAS  Google Scholar 

  13. Durgaprasad, G., Xie, Z.-L. & Rose, M. J. Iron hydride detection and intramolecular hydride transfer in a synthetic model of mono-iron hydrogenase with a CNS chelate. Inorg. Chem. 55, 386–389 (2016).

    Article  CAS  Google Scholar 

  14. Li, B., Liu, T., Popescu, C. V., Bilko, A. & Darensbourg, M. Y. Synthesis and Mössbauer characterization of octahedral iron(II) carbonyl complexes FeI2(CO)3L and FeI2(CO)2L2: developing models of the [Fe]-H2ase active site. Inorg. Chem. 48, 11283–11289 (2009).

    Article  CAS  Google Scholar 

  15. Royer, A. M., Salomone-Stagni, M., Rauchfuss, T. B. & Meyer-Klaucke, W. Iron acyl thiolato carbonyls: structural models for the active site of the [Fe]-hydrogenase (Hmd). J. Am. Chem. Soc. 132, 16997–17003 (2010).

    Article  CAS  Google Scholar 

  16. Liu, T. et al. Analysis of a pentacoordinate iron dicarbonyl as synthetic analogue of the Hmd or mono-iron hydrogenase active site. Chem. Eur. J. 16, 3083–3089 (2010).

    Article  CAS  Google Scholar 

  17. Chen, D., Scopelliti, R. & Hu, X. [Fe]-hydrogenase models featuring acylmethylpyridinyl ligands. Angew. Chem. Int. Ed. 49, 7512–7515 (2010).

    Article  CAS  Google Scholar 

  18. Chen, D., Scopelliti, R. & Hu, X. A five-coordinate iron center in the active site of [Fe]-hydrogenase hints from a model study. Angew. Chem. Int. Ed. 50, 5671–5673 (2011).

    Article  CAS  Google Scholar 

  19. Chen, D., Scopelliti, R. & Hu, X. Reversible protonation of a thiolate ligand in an [Fe]-hydrogenase model complex. Angew. Chem. Int. Ed. 51, 1919–1921 (2012).

    Article  CAS  Google Scholar 

  20. Xu, T. et al. A functional model of [Fe]-hydrogenase. J. Am. Chem. Soc. 138, 3270–3273 (2016).

    Article  CAS  Google Scholar 

  21. Song, L.-C., Xie, Z.-J., Wang, M.-M., Zhao, G.-Y. & Song, H.-B. Biomimetic models for the active site of [Fe] hydrogenase featuring an acylmethyl(hydroxymethyl)pyridine ligand. Inorg. Chem. 51, 7466–7468 (2012).

    Article  CAS  Google Scholar 

  22. Song, L.-C., Hu, F.-Q., Zhao, G.-Y., Zhang, J.-W. & Zhang, W.-W. Several new [Fe] hydrogenase model complexes with a single Fe center ligated to an acylmethyl(hydroxymethyl)pyridine or acylmethyl(hydroxy)pyridine ligand. Organometallics 33, 6614–6622 (2014).

    Article  CAS  Google Scholar 

  23. Turrell, P. J., Wright, J. A., Peck, J. N. T., Oganesyan, V. S. & Pickett, C. J. The third hydrogenase: a ferracyclic carbamoyl with close structural analogy to the active site of Hmd. Angew. Chem. Int. Ed. 49, 7508–7511 (2010).

    Article  CAS  Google Scholar 

  24. Turrell, P. J., Hill, A. D., Ibrahim, S. K., Wright, J. A. & Pickett, C. J. Ferracyclic carbamoyl complexes related to the active site of [Fe]-hydrogenase. Dalton Trans. 42, 8140–8146 (2013).

    Article  CAS  Google Scholar 

  25. Liu, T., DuBois, D. L. & Bullock, R. M. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem. 5, 228–233 (2013).

    Article  CAS  Google Scholar 

  26. Parkin, G. Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. 104, 699–768 (2004).

    Article  CAS  Google Scholar 

  27. England, J. et al. A synthetic high-spin oxoiron(IV) complex generation, spectroscopic characterization, and reactivity. Angew. Chem. Int. Ed. 48, 3622–3626 (2009).

    Article  CAS  Google Scholar 

  28. Dias, A. R. et al. Li, Ti(III), and Ti(IV) trisamidotriazacyclononane complexes. syntheses, reactivity, and structures. Inorg. Chem. 42, 2675–2682 (2003).

    Article  CAS  Google Scholar 

  29. Park, Y. J., Ziller, J. W. & Borovik, A. S. The effects of redox-inactive metal ions on the activation of dioxygen: isolation and characterization of a heterobimetallic complex containing a MnIII–(μ-OH)–CaII core. J. Am. Chem. Soc. 133, 9258–9261 (2011).

    Article  CAS  Google Scholar 

  30. Marinescu, S. C., Winkler, J. R. & Gray, H. B. Molecular mechanisms of cobalt-catalyzed hydrogen evolution. Proc. Natl Acad. Sci. USA 109, 15127–15131 (2012).

    Article  CAS  Google Scholar 

  31. Kalz, K. F., Brinkmeier, A., Dechert, S., Mata, R. A. & Meyer, F. Functional model for the [Fe] hydrogenase inspired by the frustrated lewis pair concept. J. Am. Chem. Soc. 136, 16626–16634 (2014).

    Article  CAS  Google Scholar 

  32. Lyon, E. J. et al. UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur. J. Biochem. 271, 195–204 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Welch Foundation (F-1822) and the ACS Petroleum Research Fund (53542-DN13), as well as the UT College of Natural Sciences. We also thank V. Lynch for assistance with X-ray data analysis, and S. Sorey for assistance with NMR study.

Author information

Authors and Affiliations

Authors

Contributions

M.J.R. and J.S. designed the experiments. J.S. synthesized and characterized the model complexes, and J.S. performed the experiments and analysed the data. M.J.R. and J.S. carried out the DFT calculations. J.S. and T.A.M. synthesized ligands. M.J.R. and J.S. co-wrote the paper.

Corresponding author

Correspondence to Michael J. Rose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1156 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 1275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Manes, T. & Rose, M. Structural and functional synthetic model of mono-iron hydrogenase featuring an anthracene scaffold. Nature Chem 9, 552–557 (2017). https://doi.org/10.1038/nchem.2707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2707

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing