Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide

This article has been updated

Abstract

First-row, earth-abundant metals offer an inexpensive and sustainable alternative to precious-metal catalysts. As such, iron and cobalt catalysts have garnered interest as replacements for alkene and alkyne hydrofunctionalization reactions. However, these have required the use of air- and moisture-sensitive catalysts and reagents, limiting both adoption by the non-expert as well as applicability, particularly in industrial settings. Here, we report a simple method for the use of earth-abundant metal catalysts by general activation with sodium tert-butoxide. Using only robust air- and moisture-stable reagents and pre-catalysts, both known and, significantly, novel catalytic activities have been successfully achieved, covering hydrosilylation, hydroboration, hydrovinylation, hydrogenation and [2π+2π] alkene cycloaddition. This activation method allows for the easy use of earth-abundant metals, including iron, cobalt, nickel and manganese, and represents a generic platform for the discovery and application of non-precious metal catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation strategies for iron and cobalt pre-catalysts.
Figure 2: Iron- and cobalt-catalysed hydroboration and hydrosilylation using NaOtBu as a pre-catalyst activator.
Figure 3: Gram-scale hydrosilylation using a ppm quantity of iron pre-catalyst.
Figure 4: Mechanistic proposal for alkoxide pre-catalyst activation and insight-driven application.

Similar content being viewed by others

Change history

  • 30 March 2017

    We are indebted to Professor Paul Chirik for making us aware of a safety concern33 with the hydrosilylation protocols described in our Article, and for drawing our attention to related publications24,25,27 that were published while our Article was undergoing peer review. In the version of this article originally published, we neglected to highlight that the reaction of alkoxides with alkoxysilanes is known to liberate pyrophoric SiH4 (ref. 1). Therefore, all appropriate safety precautions should be taken when carrying out reactions involving an alkoxide and silane reagents, particularly in the absence of (pre-)catalyst. Although we have carried out these reactions in our laboratories without incident, one should pay careful attention not to deviate from the order of reagent addition described in the Supplementary Information of the Article. Additionally, we incorrectly assigned the 29Si resonance of silicon ate complex 4. The signal at δ[29Si] = −96.2 arises from SiH4, generated in situ by alkoxide-catalysed disproportionation of phenylsilane. However, subsequent control experiments (see updated Supplementary Information, page 16) have shown that SiH4 is unable to activate the iron pre-catalyst. This corrigendum has no effect on the conclusions of the Article.

References

  1. Greenhalgh, M. D., Jones, A. S. & Thomas, S. P. Iron-catalysed hydrofunctionalisation of alkenes and alkynes. ChemCatChem. 7, 190–222 (2015).

    CAS  Google Scholar 

  2. Bart, S. C., Lobkovsky, E. & Chirik, P. J. Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. J. Am. Chem. Soc. 126, 13794–13807 (2004).

    CAS  PubMed  Google Scholar 

  3. Hirano, M . et al. Synthesis, structure and reactions of a dinitrogen complex of iron(0), Fe(N2)(depe)2 (depe=Et2PCH2CH2PEt2). J. Chem. Soc. Dalton Trans. 1997, 3453–3458 (1997).

    Google Scholar 

  4. Darmon, J. M. et al. Electronic structure determination of pyridine N-heterocyclic carbene iron dinitrogen complexes and neutral ligand derivatives. Organometallics 33, 5423–5433 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).

    CAS  PubMed  Google Scholar 

  6. Palmer, W. N., Diao, T., Pappas, I. & Chirik, P. J. High-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α-diimine ligands. ACS Catal. 5, 622–626 (2015).

    CAS  Google Scholar 

  7. Mo, Z., Mao, J., Gao, Y . & Deng, L. Regio- and stereoselective hydrosilylation of alkynes catalyzed by three-coordinate cobalt(I) alkyl and silyl complexes. J. Am. Chem. Soc. 136, 17414–17417 (2014).

    CAS  PubMed  Google Scholar 

  8. Atienza, C. C. H. et al. Bis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formation. J. Am. Chem. Soc. 136, 12108–12118 (2014).

    CAS  PubMed  Google Scholar 

  9. Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).

    CAS  PubMed  Google Scholar 

  10. Tseng, K.-N. T., Kampf, J. W. & Szymczak, N. K. Regulation of iron-catalyzed olefin hydroboration by ligand modifications at a remote site. ACS Catal. 5, 411–415 (2015).

    CAS  Google Scholar 

  11. Zhang, L., Peng, D., Leng, X. & Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 52, 3676–3680 (2013).

    CAS  Google Scholar 

  12. Zhang, L., Zuo, Z., Leng, X. & Huang, Z. A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 53, 2696–2700 (2014).

    CAS  Google Scholar 

  13. Chen, J., Xi, T., Xiang, R., Cheng, B., Guo, J. & Lu, Z. Asymmetric cobalt catalysts for hydroboration of 1,1-disubstituted alkenes. Org. Chem. Front. 1, 1306–1309 (2014).

    CAS  Google Scholar 

  14. Peng, D. et al. Phosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylation. J. Am. Chem. Soc. 135, 19154–19166 (2013).

    CAS  PubMed  Google Scholar 

  15. Chen, J., Xi, T. & Lu, Z. Iminopyridine oxazoline iron catalyst for asymmetric hydroboration of 1,1-disubstituted aryl alkenes. Org. Lett. 16, 6452–6455 (2014).

    CAS  PubMed  Google Scholar 

  16. Zhang, L., Zuo, Z., Wan, X. & Huang, Z. Cobalt-catalyzed enantioselective hydroboration of 1,1-disubstituted aryl alkenes. J. Am. Chem. Soc. 136, 15501–15504 (2014).

    CAS  PubMed  Google Scholar 

  17. Guo, N., Hu, M. Y., Feng, Y. & Zhu, S. F. Highly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalysts. Org. Chem. Front. 2, 692–696 (2015).

    CAS  Google Scholar 

  18. Greenhalgh, M. D. & Thomas, S. P. Chemo-, regio-, and stereoselective iron-catalysed hydroboration of alkenes and alkynes. Chem. Commun. 49, 11230–11232 (2013).

    CAS  Google Scholar 

  19. Liu, Y., Zhou, Y. H., Wang, H. & Qu, J. P. FeCl2-catalyzed hydroboration of aryl alkenes with bis(pinacolato)diboron. RSC Adv. 5, 73705–73713 (2015).

    CAS  Google Scholar 

  20. Greenhalgh, M. D., Frank, D. J. & Thomas, S. P. Iron-catalysed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalyst. Adv. Synth. Catal. 356, 584–590 (2014).

    CAS  Google Scholar 

  21. Moreau, B., Wu, J. Y. & Ritter, T. Iron-catalyzed 1,4-addition of α-olefins to dienes. Org. Lett. 11, 337–339 (2009).

    CAS  PubMed  Google Scholar 

  22. Wu, J. Y., Moreau, B. & Ritter, T. Iron-catalyzed 1,4-hydroboration of 1,3-dienes. J. Am. Chem. Soc. 131, 12915–12917 (2009).

    CAS  PubMed  Google Scholar 

  23. Hilt, G., Bolze, P. & Kieltsch, I. An iron-catalysed chemo- and regioselective tetrahydrofuran synthesis. Chem. Commun. 2005, 1996–1998 (2005).

    Google Scholar 

  24. Schuster, C. H., Diao, T., Pappas, I. & Chirik, P. J. Bench-stable, substrate-activated cobalt carboxylate pre-catalysts for alkene hydrosilylation with tertiary silanes. ACS Catalysis 6, 2632–2636 (2016).

    CAS  Google Scholar 

  25. Noda, D., Tahara, A., Sunada, Y. & Nagashima, H. Non-precious-metal catalytic systems involving iron or cobalt carboxylates and alkyl isocyanides for hydrosilylation of alkenes with hydroxysilanes. J. Am. Chem. Soc. 138, 2480–2483 (2016).

    CAS  PubMed  Google Scholar 

  26. Challinor, A. J., Calin, M., Carter, N. B. & Thomas, S. P. Amine-activated iron catalysis: air- and moisture-stable alkene and alkyne hydrofunctionalization. Adv. Synth. Catal. 358, 2404–2409 (2016).

    CAS  Google Scholar 

  27. Buslov, L., Keller, S. C. & Hu, X. Alkoxy hydroxysilanes as surrogates of gaseous silanes for hydrosilylation of alkenes. Org. Lett. 18, 1928–1931 (2016).

    CAS  PubMed  Google Scholar 

  28. Chen, C. et al. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 137, 13244–13247 (2015).

    CAS  PubMed  Google Scholar 

  29. Marciniec, B. (ed.) Hydrosilylation. A Comprehensive Review on Recent Advances Vol. 1, 1–408 (Springer, 2009).

    Google Scholar 

  30. Global Release Liner Industry Conference 2008. Optimised technologies are emerging which reduce platinum usage in silicone curing. Platinum Metals Rev. 52, 243–246 (2008).

    Google Scholar 

  31. Tondreau, A. M. et al. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 335, 567–570 (2012).

    CAS  PubMed  Google Scholar 

  32. Wu, J. Y., Stanzl, B. N. & Ritter, T. A strategy for the synthesis of well-defined iron catalysts and application to regioselective diene hydrosilylation. J. Am. Chem. Soc. 132, 13214–13216 (2010).

    CAS  PubMed  Google Scholar 

  33. Buchwald, S. L. Silane disproportionation results in spontaneous ignition. Chem. Eng. News 71, 2 (1993).

    CAS  Google Scholar 

  34. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Valyaev, D. A., Lavigne, G. & Lugan, N. Manganese organometallic compounds in homogeneous catalysis: past, present, and prospects. Coord. Chem. Rev. 308, 191–235 (2015).

    Google Scholar 

  36. Srinivas, V. et al. Bis(acetylacetonato)Ni(II)/NaBHEt3-catalyzed hydrosilylation of 1,3-dienes, alkenes and alkynes. J. Organometall. Chem. 809, 57–62 (2016).

    CAS  Google Scholar 

  37. Tran, B. L., Li, B., Driess, M. & Hartwig, J. F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes. J. Am. Chem. Soc. 136, 2555–2563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Biernesser, A. B., Li, B. & Byers, J. A. Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes. J. Am. Chem. Soc. 135, 16553–16560 (2013).

    CAS  PubMed  Google Scholar 

  39. Query, I. P., Squier, P. A., Larson, E. M., Isley, N. A. & Clark, T. B. Alkoxide-catalyzed reduction of ketones with pinacolborane. J. Org. Chem. 76, 6452–6456 (2011).

    CAS  PubMed  Google Scholar 

  40. Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Iron-catalyzed [2π+2π] cycloaddition of α,ω-dienes: the importance of redox-active supporting ligands. J. Am. Chem. Soc. 128, 13340–13341 (2006).

    CAS  PubMed  Google Scholar 

  41. Schmidt, V. A., Hoyt, J. M., Margulieux, G. W. & Chirik, P. J. Cobalt-catalyzed [2π+2π] cycloadditions of alkenes: scope, mechanism, and elucidation of electronic structure of catalytic intermediates. J. Am. Chem. Soc. 137, 7903–7914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.P.T. acknowledges the University of Edinburgh for a Chancellor's Fellowship and the Royal Society for a University Research Fellowship. J.H.D. and S.P.T. acknowledge GlaxoSmithKline and the EPSRC (EP/M506515/1) for a PhD studentship. J.P. acknowledges the China Scholarship Council for a studentship. The authors thank Z. Huang for provision of the iminopyridine oxazoline ligand.

Author information

Authors and Affiliations

Authors

Contributions

J.H.D. and S.P.T. conceived and discovered the NaOtBu activation. J.H.D. and J.P. conducted the experimental work. S.P.T. and A.P.D. provided advice for the investigations. J.H.D. and S.P.T. prepared the manuscript.

Corresponding author

Correspondence to Stephen P. Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docherty, J., Peng, J., Dominey, A. et al. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nature Chem 9, 595–600 (2017). https://doi.org/10.1038/nchem.2697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2697

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing