Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A two-dimensional conjugated aromatic polymer via C–C coupling reaction

Abstract

The fabrication of crystalline 2D conjugated polymers with well-defined repeating units and in-built porosity presents a significant challenge to synthetic chemists. Yet they present an appealing target because of their desirable physical and electronic properties. Here we report the preparation of a 2D conjugated aromatic polymer synthesized via C–C coupling reactions between tetrabromopolyaromatic monomers. Pre-arranged monomers in the bulk crystal undergo C–C coupling driven by endogenous solid-state polymerization to produce a crystalline polymer, which can be mechanically exfoliated into micrometre-sized lamellar sheets with a thickness of 1 nm. Isothermal gas-sorption measurements of the bulk material reveal a dominant pore size of ~0.6 nm, which indicates uniform open channels from the eclipsed stacking of the sheets. When employed as an organic anode in an ambient-temperature sodium cell, the material allows a fast charge/discharge of sodium ions, with impressive reversible capacity, rate capability and stability metrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM characterization of a single-layer CAP on a Au surface prepared by surface-mediated polymerization.
Figure 2: Synthesis and characterization of 2D-CAP via endogenous solid-state polymerization.
Figure 3: Isotherm profiles of Ar-gas sorption and crystalline structure analysis of 2D-CAP.
Figure 4: Reaction-mechanism analysis.
Figure 5: Sodium storage performance of 2D-CAP electrode in the potential range 0.005–2.5 V (versus Na/Na+).

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–11069 (2009).

    CAS  Google Scholar 

  3. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    CAS  PubMed  Google Scholar 

  4. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    CAS  PubMed  Google Scholar 

  5. Waller, P. J., Gándara, F. & Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015).

    CAS  PubMed  Google Scholar 

  6. Baughman, R. H., Eckardt, H. & Kertez, M. Structure–property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687–6699 (1987).

    CAS  Google Scholar 

  7. Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).

    CAS  Google Scholar 

  8. Müllen, K. Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. ACS Nano 8, 6531–6541 (2014).

    PubMed  Google Scholar 

  9. Simpson, C. D. et al.. Synthesis of a giant 222 carbon graphite sheet. Chem. Eur. J. 8, 1424–1429 (2002).

    CAS  PubMed  Google Scholar 

  10. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007).

    CAS  Google Scholar 

  11. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  12. Liu, X., Guan, C., Wang, D. & Wan, L. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv. Mater. 26, 6912–6920 (2014).

    CAS  PubMed  Google Scholar 

  13. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    CAS  PubMed  Google Scholar 

  14. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    CAS  Google Scholar 

  15. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    CAS  PubMed  Google Scholar 

  16. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Groenewolt, M. & Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17, 1789–1792 (2005).

    CAS  Google Scholar 

  18. Bojdys, M. J., Jeromenok, J., Thomas, A. & Antonietti, M. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater. 22, 2202–2205 (2010).

    CAS  PubMed  Google Scholar 

  19. Bhola, R. et al. A two-dimensional polymer from the anthracene dimer and triptycene motifs. J. Am. Chem. Soc. 135, 14134–14141 (2013).

    CAS  PubMed  Google Scholar 

  20. Kissel, P. et al. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    CAS  PubMed  Google Scholar 

  21. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    CAS  PubMed  Google Scholar 

  22. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4, 287–291 (2012).

    CAS  PubMed  Google Scholar 

  23. Gritsch, T., Coulman, D., Behm, R. J. & Ertl, G. A scanning tunneling microscopy investigation of the structure of the Pt(110) and Au(110) surfaces. Surf. Sci. 257, 297–306 (1991).

    CAS  Google Scholar 

  24. Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009).

    CAS  Google Scholar 

  25. Yuan, D., Lu, W., Zhao, D. & Zhou, H. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23, 3723–3725 (2011).

    CAS  PubMed  Google Scholar 

  26. Stille, J. K. & Mainen, E. L. Thermally stable ladder polyquinoxalines. Macromolecules 1, 36–42 (1968).

    CAS  Google Scholar 

  27. Imai, K. et al. Synthesis and properties of thermally stable ladder polymers containing the 1,4-pyrazine ring obtained from polyheterocyclizations of tetramines and tetraketones in poly(phosphoric acid) and m-cresol. Macromolecules 6, 158–162 (1973).

    CAS  Google Scholar 

  28. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    PubMed  Google Scholar 

  29. Meng, H., Perepichka, D. F. & Wudl, F. Facile solid-state synthesis of highly conducting poly(ethylenedioxythiophene). Angew. Chem. Int. Ed. 42, 658–661 (2003).

    CAS  Google Scholar 

  30. Meng, H. et al. Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J. Am. Chem. Soc. 125, 15151–15162 (2003).

    CAS  PubMed  Google Scholar 

  31. Newsome, D. A., Sengupta, D., Foroutan, H., Russo, M. F. & van Duin, A. C. T. Oxidation of silicon carbide by O2 and H O2: a ReaxFF reactive molecular dynamics study, part I. J. Phys. Chem. C 116, 1611–1621 (2012).

    Google Scholar 

  32. Weismiller, M. R., van Duin, A. C. T., Lee, J. & Yetter, R. A. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J. Phys. Chem. A 114, 5485–5492 (2010).

    CAS  PubMed  Google Scholar 

  33. Islam, M. M., Bryantsev, V. S. & van Duin, A. C. T. ReaxFF reactive force field simulations on the influence of Teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium–sulfur batteries. J. Electrochem. Soc. 161, 3009–3014 (2014).

    Google Scholar 

  34. Wu, S. M. et al. Molecular junctions based on aromatic coupling. Nat. Nanotech. 3, 569–574 (2008).

    CAS  Google Scholar 

  35. Li, H., Powell, D. R., Firman, T. K. & West, R. Structures and photophysical properties of model compounds for arylethynylene disilylene polymers. Macromolecules 31, 1093–1098 (1998).

    CAS  Google Scholar 

  36. Wang, C., Batsanov, A., Bryce, M. & Sage, I. Nanoscale aryleneethynylene molecular wires with reversible fluorenone electrochemistry for self-assembly onto metal surfaces. Org. Lett. 6, 2181–2184 (2004).

    CAS  PubMed  Google Scholar 

  37. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    CAS  PubMed  Google Scholar 

  38. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  PubMed  Google Scholar 

  39. Kundu, D., Talaie, E., Duffort, V. & Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015).

    CAS  Google Scholar 

  40. Xu, F. et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakaushi, K. et al. Aromatic porous-honeycomb electrodes for a sodium–organic energy storage device. Nat. Commun. 4, 1485 (2013).

    PubMed  Google Scholar 

  42. Cao, Y. et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012).

    CAS  PubMed  Google Scholar 

  43. Ding, J. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7, 11004–11015 (2013).

    CAS  PubMed  Google Scholar 

  44. Song, Z. et al. Polymer–graphene nanocomposites as ultrafast charge-and-discharge cathodes for rechargeable lithium batteries. Nano Lett. 12, 2205–2211 (2012).

    CAS  PubMed  Google Scholar 

  45. Wang, D. et al. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 6, 2900–2906 (2013).

    CAS  Google Scholar 

  46. Wang, Z., Luan, D., Madhavi, S., Hu, Y. & Lou, X. W. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 5, 5252–5256 (2012).

    CAS  Google Scholar 

  47. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.P.L. acknowledges a National Research Foundation (NRF) Competitive Research Programme (CRP) grant NRF2015NRF-CRP002-006 ‘Two-dimensional Covalent Organic Framework: Synthesis and Applications’. K.P. L., S.Y.Q. and the team acknowledge the NRF, Prime Minister's Office, Singapore, under its Medium Sized Centre Programme (CA2DM). S.Y.Q. and X.L. acknowledge the Singapore NRF for funding under the NRF Fellowship (NRFNRFF2013-07). Calculations were performed on the computational cluster at CA2DM, National University of Singapore. The authors thank H. Xu, D. Y. Yu, Y. W. Peng, C. L. Su, S. J. R. Tan, S. M. Poh, X. X. Zhao, D. C. Geng and J. Y. Chen for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.P.L. supervised the project. W.L. and K.P.L. designed and performed the experiments. X.L. performed the theoretical calculations under the supervision of S.Y.Q. Y.B. performed the STM characterization. Y.P.L., I.A. and L.L. helped to exfoliate the sample and conduct the AFM imaging. G.H.N. helped with the crystal files analysis. C.T.N. helped to collect XPS spectra. Z.G.H. and D.Z. helped to perform Ar-sorption measurements. B.L. helped to analyse the experimental results. W.L., X.L., S.Y.Q. and K.P.L. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Su Ying Quek or Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3818 kb)

Supplementary information

Crystallographic data for 2-TBQP. (CIF 272 kb)

Supplementary information

Crystallographic data for DDQP. (CIF 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Luo, X., Bao, Y. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nature Chem 9, 563–570 (2017). https://doi.org/10.1038/nchem.2696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing