Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G-quadruplex organic frameworks

Abstract

Two-dimensional covalent organic frameworks often π stack into crystalline solids that allow precise spatial positioning of molecular building blocks. Inspired by the hydrogen-bonded G-quadruplexes found frequently in guanine-rich DNA, here we show that this structural motif can be exploited to guide the self-assembly of naphthalene diimide and perylene diimide electron acceptors end-capped with two guanine electron donors into crystalline G-quadruplex-based organic frameworks, wherein the electron donors and acceptors form ordered, segregated π-stacked arrays. Time-resolved optical and electron paramagnetic resonance spectroscopies show that photogenerated holes and electrons in the frameworks have long lifetimes and display recombination kinetics typical of dissociated charge carriers. Moreover, the reduced acceptors form polarons in which the electron is shared over several molecules. The G-quadruplex frameworks also demonstrate potential as cathode materials in Li-ion batteries because of the favourable electron- and Li-ion-transporting capacity provided by the ordered rylene diimide arrays and G-quadruplex structures, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of G-quadruplex organic frameworks.
Figure 2: Crystalline and porous G-quadruplex organic frameworks of G2NDI and G2PDI.
Figure 3: Femtosecond time-resolved transient-absorption spectra.
Figure 4: Time-resolved EPR spectra.
Figure 5: Comparison of CW-EPR spectra of reduced rylene diimides in the frameworks and in isolated molecules.
Figure 6: Electrochemical response and performance of a Li-ion battery using G2PDI as the cathode.

Similar content being viewed by others

References

  1. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    CAS  PubMed  Google Scholar 

  2. Grozema, F. C. & Siebbeles, L. D. A. Mechanism of charge transport in self-organizing organic materials. Int. Rev. Phys. Chem. 27, 87–138 (2008).

    CAS  Google Scholar 

  3. Roznyatovskiy, V. V., Carmieli, R., Dyar, S. M., Brown, K. E. & Wasielewski, M. R. Photodriven charge separation and transport in self-assembled zinc tetrabenzotetraphenylporphyrin and perylenediimide charge conduits. Angew. Chem. Int. Ed. 53, 3457–3461 (2014).

    CAS  Google Scholar 

  4. Hartnett, P. E. et al. Long-lived charge carrier generation in ordered films of a covalent perylenediimide-diketopyrrolopyrrole-perylenediimide molecule. Chem. Sci. 6, 402–411 (2015).

    CAS  PubMed  Google Scholar 

  5. Mallia, A. R., Salini, P. S. & Hariharan, M. Nonparallel stacks of donor and acceptor chromophores evade geminate charge recombination. J. Am. Chem. Soc. 137, 15604–15607 (2015).

    CAS  PubMed  Google Scholar 

  6. Dogru, M. & Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 50, 5531–5546 (2014).

    CAS  Google Scholar 

  7. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    CAS  PubMed  Google Scholar 

  8. Ding, S.-Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    CAS  PubMed  Google Scholar 

  9. Waller, P. J., Gandara, F. & Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015).

    CAS  PubMed  Google Scholar 

  10. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    CAS  Google Scholar 

  11. Jin, S. B. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013).

    CAS  Google Scholar 

  12. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    CAS  Google Scholar 

  13. Ding, X. S. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289–1293 (2011).

    CAS  Google Scholar 

  14. Cai, S.-L. et al. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chem. Sci. 5, 4693–4700 (2014).

    CAS  Google Scholar 

  15. Wilson, A. J. Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter 3, 409–425 (2007).

    CAS  Google Scholar 

  16. Chen, T.-H. et al. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 5, 5131 (2014).

    CAS  PubMed  Google Scholar 

  17. Li, P. et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew. Chem. Int. Ed. 54, 574–577 (2015).

    CAS  Google Scholar 

  18. He, Y. B., Xiang, S. C. & Chen, B. L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011).

    CAS  PubMed  Google Scholar 

  19. Wu, Y.-L., Brown, K. E. & Wasielewski, M. R. Extending photoinduced charge separation lifetimes by using supramolecular design: guanine–perylenediimide G-quadruplex. J. Am. Chem. Soc. 135, 13322–13325 (2013).

    CAS  PubMed  Google Scholar 

  20. Wu, Y.-L., Brown, K. E., Gardner, D. M., Dyar, S. M. & Wasielewski, M. R. Photoinduced hole injection into a self-assembled π-extended G-quadruplex. J. Am. Chem. Soc. 137, 3981–3990 (2015).

    CAS  PubMed  Google Scholar 

  21. Sessler, J. L., Sathiosatham, M., Doerr, K., Lynch, V. & Abboud, K. A. A G-quartet formed in the absence of a templating metal cation: a new 8-(N,N-dimethylaniline)guanosine derivative. Angew. Chem. Int. Ed. 39, 1300–1303 (2000).

    CAS  Google Scholar 

  22. Otero, R. et al. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew. Chem. Int. Ed. 44, 2270–2275 (2005).

    CAS  Google Scholar 

  23. Zambounis, J. S., Hao, Z. & Iqbal, A. Latent pigments activated by heat. Nature 388, 131–132 (1997).

    CAS  Google Scholar 

  24. Hartnett, P. E. et al. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. J. Am. Chem. Soc. 136, 16345–16356 (2014).

    CAS  PubMed  Google Scholar 

  25. Huang, N., Chen, X., Krishna, R. & Jiang, D. L. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Ed. 54, 2986–2990 (2015).

    CAS  Google Scholar 

  26. Giorgi, T. et al. Gel-like lyomesophases formed in organic solvents by self-assembled guanine ribbons. Chem. Eur. J. 8, 2143–2152 (2002).

    CAS  PubMed  Google Scholar 

  27. El Garah, M. et al. Guanosine-based hydrogen-bonded 2D scaffolds: metal-free formation of G-quartet and G-ribbon architectures at the solid/liquid interface. Chem. Commun. 51, 11677–11680 (2015).

    Google Scholar 

  28. Wu, Y. et al. Electron delocalization in a rigid cofacial naphthalene-1,8:4,5-bis(dicarboximide) dimer. Angew. Chem. Int. Ed. 53, 9476–9481 (2014).

    CAS  Google Scholar 

  29. McCarthy, B. D., Hontz, E. R., Yost, S. R., Van Voorhis, T. & Dinca, M. Charge transfer or J-coupling? Assignment of an unexpected red-shifted absorption band in a naphthalenediimide-based metal–organic framework. J. Phys. Chem. Lett. 4, 453–458 (2013).

    CAS  PubMed  Google Scholar 

  30. Yushchenko, O. et al. Ultrafast intersystem-crossing dynamics and breakdown of the Kasha-Vavilov's rule of naphthalenediimides. J. Phys. Chem. Lett. 6, 2096–2100 (2015).

    CAS  PubMed  Google Scholar 

  31. Bullock, J. E. et al. Photophysics and redox properties of rylene imide and diimide dyes alkylated ortho to the imide groups. J. Phys. Chem. B 114, 1794–1802 (2010).

    CAS  PubMed  Google Scholar 

  32. Gosztola, D., Niemczyk, M. P., Svec, W., Lukas, A. S. & Wasielewski, M. R. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J. Phys. Chem. A 104, 6545–6551 (2000).

    CAS  Google Scholar 

  33. Weller, A. Photoinduced electron-transfer in solution—exciplex and radical ion-pair formation free enthalpies and their solvent dependence. Z. Phys. Chem. 133, 93–98 (1982).

    CAS  Google Scholar 

  34. Credgington, D., Jamieson, F. C., Walker, B., Nguyen, T. Q. & Durrant, J. R. Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. 24, 2135–2141 (2012).

    CAS  PubMed  Google Scholar 

  35. Hodgkiss, J. M. et al. Subnanosecond geminate charge recombination in polymer–polymer photovoltaic devices. Phys. Rev. Lett. 104, 177701 (2010).

    PubMed  Google Scholar 

  36. Wiederrecht, G. P., Svec, W. A. & Wasielewski, M. R. Triplet states with unusual spin polarization resulting from radical ion pair recombination at short distances. J. Am. Chem. Soc. 121, 7726–7727 (1999).

    CAS  Google Scholar 

  37. Bullock, J. E., Carmieli, R., Mickley, S. M., Vura-Weis, J. & Wasielewski, M. R. Photoinitiated charge transport through π-stacked electron conduits in supramolecular ordered assemblies of donor−acceptor triads. J. Am. Chem. Soc. 131, 11919–11929 (2009).

    CAS  PubMed  Google Scholar 

  38. Closs, G. L., Forbes, M. D. E. & Norris, J. R. Spin-polarized electron-paramagnetic resonance-spectra of radical pairs in micelles—observation of electron spin–spin interactions. J. Phys. Chem. 91, 3592–3599 (1987).

    CAS  Google Scholar 

  39. Kobori, Y., Sekiguchi, S., Akiyama, K. & Tero-Kubota, S. Chemically induced dynamic electron polarization study on the mechanism of exchange interaction in radical ion pairs generated by photoinduced electron transfer reactions. J. Phys. Chem. A 103, 5416–5424 (1999).

    CAS  Google Scholar 

  40. Trifunac, A. D., Nelson, D. J. & Mottley, C. Chemically induced dynamic electron polarization. Examples of S–T±1 polarization. J. Magn. Reson. 30, 263–272 (1978).

    CAS  Google Scholar 

  41. Nardes, A. M. et al. Photoinduced charge carrier generation and decay in sequentially deposited polymer/fullerene layers: bulk heterojunction vs planar interface. J. Phys. Chem. C 116, 7293–7305 (2012).

    CAS  Google Scholar 

  42. Ferguson, A. J., Kopidakis, N., Shaheen, S. E. & Rumbles, G. Dark carriers, trapping, and activation control of carrier recombination in neat P3HT and P3HT:PCBM blends. J. Phys. Chem. C 115, 23134–23148 (2011).

    CAS  Google Scholar 

  43. Mondal, T., Sakurai, T., Yoneda, S., Seki, S. & Ghosh, S. Semiconducting nanotubes by intrachain folding following macroscopic assembly of a naphthalene–diimide (NDI) appended polyurethane. Macromolecules 48, 879–888 (2015).

    CAS  Google Scholar 

  44. Norris, J. R., Uphaus, R. A., Crespi, H. L. & Katz, J. Electron spin resonance of chlorophyll and origin of signal-I in photosynthesis. Proc. Natl Acad. Sci. USA 68, 625–628 (1971).

    CAS  PubMed  Google Scholar 

  45. Song, Z. & Zhou, H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013).

    CAS  Google Scholar 

  46. Liang, Y., Tao, Z. & Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Ener. Mater. 2, 742–769 (2012).

    CAS  Google Scholar 

  47. Song, Z., Zhan, H. & Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. 49, 8444–8448 (2010).

    CAS  Google Scholar 

  48. Xu, F. et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Forman, S. L., Fettinger, J. C., Pieraccini, S., Gottareli, G. & Davis, J. T. Toward artificial ion channels: a lipophilic G-quadruplex. J. Am. Chem. Soc. 122, 4060–4067 (2000).

    CAS  Google Scholar 

  50. Arnal-Herault, C. et al. Functional G-quartet macroscopic membrane films. Angew. Chem. Int. Ed. 46, 8409–8413 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Department of Energy (DOE) under grant no. DE-FG02-99ER14999 (M.R.W.). N.E.H. was supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. K.-S.C. and M.C.H. acknowledge the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the US DOE Office of Basic Energy Sciences (Award No. DE-AC02-06CH11357), for Li-ion battery fabrication and testing. The computational work was supported by the National Science Foundation (NSF) under grant no. DMR-1334928 (R.Q.S.). J.T.H. and O.K.F. acknowledge support from the US DOE Office of Science, Office of Basic Energy Sciences (grant no. DE-FG02-87ER13808) and Northwestern University. This work made use of the J.B. Cohen X-Ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205). This work made use of the EPIC facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.W. and M.R.W. planned and directed the project. Y.-L.W., N.E.H., N.S.L., K.-S.C., L.M, and T.C.W. prepared the materials, performed the structural characterization and carried out measurements and data analysis. D.A.G.-G. developed the structural models and carried out the simulations. All the authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding authors

Correspondence to Yi-Lin Wu or Michael R. Wasielewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YL., Horwitz, N., Chen, KS. et al. G-quadruplex organic frameworks. Nature Chem 9, 466–472 (2017). https://doi.org/10.1038/nchem.2689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing