Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design

Abstract

The production of natural product compound libraries has been observed in nature for different organisms such as bacteria, fungi and plants; however, little is known about the mechanisms generating such chemically diverse libraries. Here we report mechanisms leading to the biosynthesis of the chemically diverse rhabdopeptide/xenortide peptides (RXPs). They are exclusively present in entomopathogenic bacteria of the genera Photorhabdus and Xenorhabdus that live in symbiosis with nematodes delivering them to insect prey, which is killed and utilized for nutrition by both nematodes and bacteria. Chemical diversity of the biologically active RXPs results from a combination of iterative and flexible use of monomodular nonribosomal peptide synthetases including substrate promiscuity, enzyme cross-talk and enzyme stoichiometry as shown by in vivo and in vitro experiments. Together, this highlights several of nature's methods for diversification, or evolution, of natural products and sheds light on the biosynthesis of the bioactive RXPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of selected RXP derivatives highlighting the chemical diversity.
Figure 2: RXP production from selected Xenorhabdus and Photorhabdus wild-type strains correlating the NRPS organization with the RXPs produced in these strains.
Figure 3: Selected modifications of the RXP cluster from Xenorhabdus KJ12.1 heterologously expressed in E. coli with the RXP derivatives produced from these modifications.
Figure 4: Dependence of RXP chain length on protein stoichiometry of proteins involved in peptide elongation (Kj12B) and peptide termination (Kj12C) as shown by Western blot, HPLC/MS analysis and in vitro experiments using purified Kj12B and Kj12C.
Figure 5: Examples for natural and artificial crosstalk between different RXP-NRPSs analysed by heterologous expression in E. coli.

Similar content being viewed by others

References

  1. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  Google Scholar 

  2. Weng, J. K. & Noel, J. P. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harb. Symp. Quant. Biol. 77, 309–320 (2012).

    Article  Google Scholar 

  3. Fischbach, M. A. & Clardy, J. One pathway, many products. Nat. Chem. Biol. 3, 353–355 (2007).

    Article  CAS  Google Scholar 

  4. Firn, R. D. & Jones, C. G. Natural products—a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).

    Article  CAS  Google Scholar 

  5. Weng, J.-K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1667–1670 (2012).

    Article  CAS  Google Scholar 

  6. Tudzynski, B. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66, 597–611 (2004).

    Article  Google Scholar 

  7. Ross, A. C. et al. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. J. Am. Chem. Soc. 135, 1155–1162 (2013).

    Article  CAS  Google Scholar 

  8. Donia, M. S., Ravel, J. & Schmidt, E. W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

    Article  CAS  Google Scholar 

  9. Schröder, F. C. et al. Combinatorial chemistry in insects: a library of defensive macrocyclic polyamines. Science 281, 428–431 (1998).

    Article  Google Scholar 

  10. Meyer, S. et al. Biochemical dissection of the natural diversification of microcystin provides lessons for synthetic biology of NRPS. Cell Chem. Biol. 23, 462–471 (2016).

    Article  CAS  Google Scholar 

  11. Xu, Y. et al. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem. Biol. 15, 898–907 (2008).

    Article  CAS  Google Scholar 

  12. Sieber, S. A. & Marahiel, M. A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105, 715–738 (2005).

    Article  CAS  Google Scholar 

  13. Wenzel, S. C., Meiser, P., Binz, T. M., Mahmud, T. & Müller, R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew. Chem. Int. Ed. 45, 2296–2301 (2006).

    Article  CAS  Google Scholar 

  14. Juguet, M. et al. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. Chem. Biol. 16, 421–431 (2009).

    Article  CAS  Google Scholar 

  15. Mootz, H. D., Schwarzer, D. & Marahiel, M. A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 3, 490–504 (2002).

    Article  CAS  Google Scholar 

  16. Crawford, J. M., Portmann, C., Zhang, X., Roeffaers, M. B. J. & Clardy, J. Small molecule perimeter defense in entomopathogenic bacteria. Proc. Natl Acad. Sci. USA 109, 10821–10826 (2012).

    Article  CAS  Google Scholar 

  17. Proschak, A. et al. Biosynthesis of the insecticidal xenocyloins in Xenorhabdus bovienii. ChemBioChem 15, 369–372 (2014).

    Article  CAS  Google Scholar 

  18. Reimer, D. et al. Rhabdopeptides as insect-specific virulence factors from entomopathogenic bacteria. ChemBioChem 14, 1991–1997 (2013).

    Article  CAS  Google Scholar 

  19. Reimer, D., Nollmann, F. I., Schultz, K., Kaiser, M. & Bode, H. B. Xenortide biosynthesis by entomopathogenic Xenorhabdus nematophila. J. Nat. Prod. 77, 1976–1980 (2014).

    Article  CAS  Google Scholar 

  20. Bode, E. et al. Simple ‘on-demand’ production of bioactive natural products. ChemBioChem 16, 1115–1119 (2015).

    Article  CAS  Google Scholar 

  21. Bode, H. B. et al. Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chem. Eur. J. 18, 2342–2348 (2012).

    Article  CAS  Google Scholar 

  22. Fuchs, S. W., Grundmann, F., Kurz, M., Kaiser, M. & Bode, H. B. Fabclavines: bioactive peptide-polyketide-polyamino hybrids from Xenorhabdus. ChemBioChem 15, 512–516 (2014).

    Article  CAS  Google Scholar 

  23. Vingadassalon, A. et al. Natural combinatorial biosynthesis involving two clusters for the synthesis of three pyrrolamides in Streptomyces netropsis. ACS Chem. Biol. 10, 601–610 (2015).

    Article  CAS  Google Scholar 

  24. Mootz, H. D., Finking, R. & Marahiel, M. A. 4’-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J. Biol. Chem. 276, 37289–37298 (2001).

    Article  CAS  Google Scholar 

  25. Moss, S. J., Martin, C. J. & Wilkinson, B. Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. Nat. Prod. Rep. 21, 575–593 (2004).

    Article  CAS  Google Scholar 

  26. Olivera, B. M. et al. Diversity of Conus neuropeptides. Science 249, 257–263 (1990).

    Article  CAS  Google Scholar 

  27. Yamanaka, K., Maruyama, C., Takagi, H. & Hamano, Y. ε-Poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat. Chem. Biol. 4, 766–772 (2008).

    Article  CAS  Google Scholar 

  28. Maruyama, C. et al. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nat. Chem. Biol. 8, 791–797 (2012).

    Article  CAS  Google Scholar 

  29. Schroeder, F. C. et al. Polyazamacrolides from ladybird beetles: ring-size selective oligomerization. Proc. Natl Acad. Sci. USA 95, 13387–13391 (1998).

    Article  CAS  Google Scholar 

  30. Degenkolb, T. et al. The production of multiple small peptaibol families by single 14-module Peptide synthetases in Trichoderma/Hypocrea. Chem. Biodivers. 9, 499–535 (2012).

    Article  CAS  Google Scholar 

  31. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  Google Scholar 

  32. Blenau, W. & Baumann, A. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol. 48, 13–38 (2001).

    Article  CAS  Google Scholar 

  33. Koeberle, A. & Werz, O. Multi-target approach for natural products in inflammation. Drug Discov. Today 19, 1871–1882 (2014).

    Article  CAS  Google Scholar 

  34. Mehta, K. C., Dargad, R. R., Borade, D. M. & Swami, O. C. Burden of antibiotic resistance in common infectious diseases: role of antibiotic combination therapy. J. Clin. Diagn. Res. 8, ME05–ME08 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Fischbach, M. A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 14, 519–523 (2011).

    Article  CAS  Google Scholar 

  36. Zhou, Q. et al. Xentrivalpeptides A–Q: depsipeptide diversification in Xenorhabdus. J. Nat. Prod. 75, 1717–1722 (2012).

    Article  CAS  Google Scholar 

  37. Nollmann, F. I. et al. Insect-specific production of new GameXPeptides in Photorhabdus luminescens TTO1, widespread natural products in entomopathogenic bacteria. ChemBioChem 16, 205–208 (2015).

    Article  CAS  Google Scholar 

  38. Balunas, M. J. et al. Dragonamide E, a modified linear lipopeptide from Lyngbya majuscula with antileishmanial activity. J. Nat. Prod. 73, 60–66 (2010).

    Article  CAS  Google Scholar 

  39. Sanchez, L. M. et al. Almiramides A−C: discovery and development of a new class of leishmaniasis lead compounds. J. Med. Chem. 53, 4187–4197 (2010).

    Article  CAS  Google Scholar 

  40. Simmons, T. L. et al. Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. J. Nat. Prod. 71, 1544–1550 (2008).

    Article  Google Scholar 

  41. Lang, G. et al. Pterulamides I−VI, linear peptides from a Malaysian Pterula sp. J. Nat. Prod. 69, 1389–1393 (2006).

    Article  CAS  Google Scholar 

  42. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, 1989).

    Google Scholar 

  43. Hacker, C., Glinski, M., Hornbogen, T., Doller, A. & Zocher, R. Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase. J. Biol. Chem. 275, 30826–30832 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an ERC Starting Grant to H.B.B. (grant agreement no. 311477). The authors are grateful to Daniela Reimer for her pioneering work on rhabdopeptide biosynthesis and the identification of the first RXP-BGC. Additionally, M.K. and H.B.B. were supported by the European Community's Seventh Framework Program (FP7/2007–2013) under grant agreement no. 602773.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and H.B.B. planned the experiments and wrote the paper, all experiments were performed by X.C. except protein expression, quantification and in vitro experiments performed by S.N., chemical synthesis of RXPs performed by F.W. and bioactivity testing performed by M.K., I.B. and R.F. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Helge. B. Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3649 kb)

Supplementary information

Supplementary information (XLSX 36 kb)

Supplementary information

Supplementary information (XLSX 21 kb)

Supplementary information

Supplementary information (XLSX 33 kb)

Supplementary information

Supplementary information (XLSX 23 kb)

Supplementary information

Supplementary information (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Nowak, S., Wesche, F. et al. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nature Chem 9, 379–386 (2017). https://doi.org/10.1038/nchem.2671

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing