Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reticular synthesis of porous molecular 1D nanotubes and 3D networks

Abstract

Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal–organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of ‘reticular synthesis’, in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the ‘node and strut’ principles of reticular synthesis to molecular crystals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reticular synthesis of extended frameworks and molecular crystals.
Figure 2: Chiral TCCs as linear ditopic building blocks.
Figure 3: Crystal structures for non-isoreticular homochiral TCC1-R and TCC2-R and gas-sorption isotherms for TCC1-R, TCC2-R and TCC3-R.
Figure 4: Synthesis of ‘isoreticular’ racemic 1D nanotubes.
Figure 5: Predicted crystal-energy landscapes.
Figure 6: Reticular synthesis of pillared porous molecular networks by mixing linear ditopic cages and tetrahedral cages with opposing chirality.

Similar content being viewed by others

References

  1. Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).

    Article  CAS  Google Scholar 

  4. Chen, L. et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 13, 954–960 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, 8075 (2015).

    Article  CAS  Google Scholar 

  6. Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35, 565–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Blake, A. J. et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord. Chem. Rev. 183, 117–138 (1999).

    Article  CAS  Google Scholar 

  8. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  9. Simard, M., Su, D. & Wuest, J. D. Use of hydrogen-bonds to control molecular aggregation—self-assembly of 3-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991).

    Article  CAS  Google Scholar 

  10. Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4‴-tetracyanotetraphenylmethane]BF4.xC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  11. Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H. & Kitagawa, S. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4] xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 1725–1727 (1997).

    Article  CAS  Google Scholar 

  12. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ducharme, Y. & Wuest, J. D. Use of hydrogen-bonds to control molecular aggregation—extensive, self-complementary arrays of donors and acceptors. J. Org. Chem. 53, 5787–5789 (1988).

    Article  CAS  Google Scholar 

  16. Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice. J. Am. Chem. Soc. 114, 5473–5475 (1992).

    Article  CAS  Google Scholar 

  17. Mitra, T. et al. Molecular shape sorting using molecular organic cages. Nat. Chem. 5, 276–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014).

    Article  CAS  Google Scholar 

  19. Tozawa, T. et al. Porous organic cages. Nat. Mater. 8, 973–978 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hasell, T. et al. Controlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents. J. Am. Chem. Soc. 136, 1438–1448 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).

    CAS  PubMed  Google Scholar 

  22. Hasell, T., Chong, S. Y., Jelfs, K. E., Adams, D. J. & Cooper, A. I. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Unruh, D. K., Gojdas, K., Libo, A. & Forbes, T. Z. Development of metal–organic nanotubes exhibiting low-temperature, reversible exchange of confined ‘ice channels’. J. Am. Chem. Soc. 135, 7398–7401 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Ronson, T. K., Zarra, S., Black, S. P. & Nitschke, J. R. Metal–organic container molecules through subcomponent self-assembly. Chem. Commun. 49, 2476–2490 (2013).

    Article  CAS  Google Scholar 

  26. Xia, Y. N. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  27. Herm, Z. R. et al. Separation of hexane isomers in a metal–organic framework with triangular channels. Science 340, 960–964 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. He, L. et al. Shape-persistent macrocyclic aromatic tetrasulfonamides: molecules with nanosized cavities and their nanotubular assemblies in solid state. Proc. Natl Acad. Sci. USA 103, 10850–10855 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. et al. Assembly of supramolecular nanotubes from molecular triangles and 1,2-dihalohydrocarbons. J. Am. Chem. Soc. 136, 16651–16660 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Ghadiri, M. R., Granja, J. R., Milligan, R. A., Mcree, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, X. B. et al. Robust ordered bundles of porous helical nanotubes assembled from fully rigid ionic benzene-1,3,5-tricarboxamides. Chem. Eur. J. 21, 15388–15394 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Hong, B. H. et al. Self-assembled arrays of organic nanotubes with infinitely long one-dimensional H-bond chains. J. Am. Chem. Soc. 123, 10748–10749 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Frischmann, P. D., Sahli, B. J., Guieu, S., Patrick, B. O. & MacLachlan, M. J. Sterically-limited self-assembly of Pt4 macrocycles into discrete non-covalent nanotubes: porous supramolecular tetramers and hexamers. Chem. Eur. J. 18, 13712–13721 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Ji, Q. et al. Cyclotetrabenzoin: facile synthesis of a shape-persistent molecular square and its assembly into hydrogen-bonded nanotubes. Chem. Eur. J. 21, 17205–17209 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Schneider, M. W. et al. Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. Chem. Eur. J. 18, 836–847 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  37. Issa, N., Karamertzanis, P. G., Welch, G. W. A. & Price, S. L. Can the formation of pharmaceutical cocrystals be computationally predicted? I. Comparison of lattice energies. Cryst. Growth Des. 9, 442–453 (2009).

    Article  CAS  Google Scholar 

  38. Chan, H. C. S., Kendrick, J., Neumann, M. A. & Leusen, F. J. J. Towards ab initio screening of co-crystal formation through lattice energy calculations and crystal structure prediction of nicotinamide, isonicotinamide, picolinamide and paracetamol multi-component crystals. CrystEngComm 15, 3799–3807 (2013).

    Article  CAS  Google Scholar 

  39. Case, D. H., Campbell, J. E., Bygrave, P. J. & Day, G. M. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 12, 910–924 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Pyzer-Knapp, E. O. et al. Predicted crystal energy landscapes of porous organic cages. Chem. Sci. 5, 2235–2245 (2014).

    Article  CAS  Google Scholar 

  41. Cruz-Cabeza, A. J., Day, G. M. & Jones, W. Predicting inclusion behaviour and framework structures in organic crystals. Chem. Eur. J. 15, 13033–13040 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez-Albelo, L. M. et al. Zeolitic polyoxometalate-based metal–organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 131, 16078–16087.

  43. Little, M. A. et al. Trapping virtual pores by crystal retro-engineering. Nat. Chem. 7, 153–159 (2015).

    Article  CAS  Google Scholar 

  44. Marder, S. R., Kippelen, B., Jen, A. K. Y. & Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997).

    Article  CAS  Google Scholar 

  45. Dou, J. H. et al. Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution. J. Am. Chem. Soc. 137, 15947–15956 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Haddon, R. C. Design of organic metals and superconductors. Nature 256, 394–396 (1975).

    Article  CAS  Google Scholar 

  47. Coronado, E., Galán-Mascaros, J. R., Gómez-García, C. J. & Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408, 447–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Crayston, J. A., Devine, J. N. & Walton, J. C. Conceptual and synthetic strategies for the preparation of organic magnets. Tetrahedron 56, 7829–7857 (2000).

    Article  CAS  Google Scholar 

  49. Weingarten, A. S. et al. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 137, 15241–15246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFTD) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Childs, H. et al. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data (Lawrence Livermore National Laboratory, 2012); https://wci.llnl.gov/simulation/computer-codes/visit

    Book  Google Scholar 

  56. Price, S. L. et al. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys. Chem. Chem. Phys. 12, 8478–8490 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Chisholm, J. & Motherwell, S. COMPACK: a program for identifying crystal structure similarity using distances. J. Appl. Cryst. 38, 228–231 (2005).

    Article  CAS  Google Scholar 

  58. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) (grants EP/H000925/1, EP/N004884/1 and EP/K018132/1) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC through grant agreements no. 307358 (ERC-stG-2012-ANGLE) and no. 321156 (ERC-AG-PE5-ROBOT). K.E.J. and T.H. thank the Royal Society for University Research Fellowships. We thank Diamond Light Source for access to beamlines I19 (MT8728, and MT11231) and I11 (EE12336), which contributed to the results presented here, and M. Warren and S. Barnett for their assistance. We thank the Advanced Light Source, supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231, and S. J. Teat and K. J. Gagnon for their assistance. We acknowledge the ARCHER UK National Supercomputing Service via UK's HPC Materials Chemistry Consortium membership, which is funded by the EPSRC (EP/L000202), as well as the use of the IRIDIS High Performance Computing Facility and associated support services at the University of Southampton, in the completion of this work. We thank M. Jones and the Centre for Materials Discovery for assistance with liquid chromatography–mass spectroscopy measurements and D. McMahon for assistance with powder-pattern similarity calculations.

Author information

Authors and Affiliations

Authors

Contributions

A.G.S. and A.I.C. conceived the project. A.G.S., M.E.B., X.W., G.C. and C.M. prepared the precursors and cage molecules. A.G.S., C.M. and M.A.L. crystallized and co-crystallized the cage molecules. M.A.L. and S.Y.C. interpreted the X-ray data. R.C., T.H. and L.C. interpreted the sorption data. A.P. and G.M.D. carried out and interpreted the CSP calculations. K.E.J. modelled the cage conformers and carried out and interpreted gas-phase dimer calculations. D.H. constructed and interpreted the variable pore-size-distribution models. All the authors interpreted the structures and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to G. M. Day or A. I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9754 kb)

Supplementary information

Crystallographic data for TCC1-R·MeOH solvate. (CIF 2450 kb)

Supplementary information

Crystallographic data for TCC2-R·MeOH solvate. (CIF 1589 kb)

Supplementary information

Crystallographic data for TCC2-R·NMP·MeOH solvate. (CIF 1156 kb)

Supplementary information

Crystallographic data for TCC2-R·NMP·MeOH solvate 300K. (CIF 1142 kb)

Supplementary information

Crystallographic data for Racemic TCC1·Et2O solvate. (CIF 3239 kb)

Supplementary information

Crystallographic data for Racemic TCC2·IPA solvate. (CIF 4616 kb)

Supplementary information

Crystallographic data for Racemic TCC2·acetone solvate. (CIF 6079 kb)

Supplementary information

Crystallographic data for Racemic TCC2·acetone solvate 150K. (CIF 1292 kb)

Supplementary information

Crystallographic data for Racemic TCC2 desolvate 350K. (CIF 982 kb)

Supplementary information

Crystallographic data for Racemic TCC2 desolvate 150K. (CIF 1228 kb)

Supplementary information

Crystallographic data for Racemic TCC3·Et2O solvate. (CIF 2457 kb)

Supplementary information

Crystallographic data for Racemic TCC3 solvate 300K. (CIF 1176 kb)

Supplementary information

Crystallographic data for Racemic TCC3 desolvate 350K. (CIF 817 kb)

Supplementary information

Crystallographic data for Racemic TCC3·N2. (CIF 2457 kb)

Supplementary information

Crystallographic data for TCC2-S·TCC3-R·dioxane solvate. (CIF 5589 kb)

Supplementary information

Crystallographic data for TCC2-R·2(CC3-S)·dioxane solvate. (CIF 11276 kb)

Supplementary information

Crystallographic data for TCC2-R·2(CC3-S) desolvate 293K. (CIF 5979 kb)

Supplementary information

Crystallographic data for TCC1-R·2(CC3-S)·dioxane solvate 150K. (CIF 15167 kb)

Supplementary information

Crystallographic data for TCC1-R·2(CC3-S) desolvate 400K. (CIF 3591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, A., Little, M., Pulido, A. et al. Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chem 9, 17–25 (2017). https://doi.org/10.1038/nchem.2663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing