Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products

Abstract

Tumour hypoxia is speculated to be a key driver of therapeutic resistance and metastatic dissemination. Consequently, the discovery of new potent agents that selectively target the hypoxic cell population may reveal new and untapped antitumour mechanisms. Here we demonstrate that the BE-43547 subclass of the APD-CLD (amidopentadienoate-containing cyclolipodepsipeptides) natural products possesses highly hypoxia-selective growth-inhibitory activity against pancreatic cancer cells. To enable this discovery, we have developed the first synthesis of the BE-43547-macrocyclic scaffold in 16 steps (longest linear sequence), which also allowed access to the full panel of relative stereoisomers and ultimately to the assignment of stereochemical configuration. Discrepancies between the spectroscopic signatures of the synthetic compounds with that originally reported for the BE-43547 members stimulated us to re-isolate the natural product from a BE-43547-producing microorganism during which we elucidated the biosynthetic gene clusters for the BE-43547 family as well as for all other known APD-CLDs. Our studies underline the exciting possibilities for the further development of the anticancer activities of these natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: APD-CLD natural products and strategy for the stereodivergent synthesis of 1-A1.
Figure 2: Total synthesis of 1-A1-anti P1/P2.
Figure 3: Biosynthesis of the APD-CLDs.
Figure 4: Isolation and structural assignment of BE-43547A congeners.
Figure 5: 1-A1, 1-A2 and ent-1-A1 are hypoxia-selective cytotoxins distinct from rakicidin A.

Similar content being viewed by others

References

  1. Walsh, C. T. & Fischbach, M. A. Natural products version 2.0: connecting genes to molecules. J. Am. Chem. Soc. 132, 2469–2493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Winter, J. M., Behnken, S. & Hertweck, C. Genomics-inspired discovery of natural products. Curr. Opin. Chem. Biol. 15, 22–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).

    CAS  PubMed  Google Scholar 

  5. Nishioka, H., Nakajima, S., Nagashima, M., Kojiri, K. & Suda, H. BE-43547 series substances, their manufacture with Streptomyces species, and their use as antitumor agent. Japanese patent 10147594 A 19980602 (1998).

  6. McBrien, K. D. et al. Rakicidins, new cytotoxic lipopeptides from Micromonospora sp. fermentation, isolation and characterization. J. Antibiot. 48, 1446–1452 (1995).

    Article  CAS  Google Scholar 

  7. Yamazaki, Y., Kunimoto, S. & Ikeda, D. Rakicidin A: a hypoxia-selective cytotoxin. Biol. Pharm. Bull. 30, 261–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Takeuchi, M. et al. Rakicidin A effectively induces apoptosis in hypoxia adapted Bcr-Abl positive leukemic cells. Cancer Sci. 102, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Poulsen, T. B. A concise route to the macrocyclic core of the rakicidins. Chem. Commun. 47, 12837–12839 (2011).

    Article  CAS  Google Scholar 

  10. Sang, F. et al. Total synthesis and determination of the absolute configuration of rakicidin A. J. Am. Chem. Soc. 136, 15787–15791 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Oku, N. et al. Complete stereochemistry and preliminary structure–activity relationship of rakicidin A, a hypoxia-selective cytotoxin from Micromonospora sp. J. Nat. Prod. 77, 2561–2565 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Clement, L. L. et al. The amido-pentadienoate-functionality of the rakicidins is a thiol reactive electrophile—development of a general synthetic strategy. Chem. Commun. 51, 12427–12430 (2015).

    Article  CAS  Google Scholar 

  13. Tsakos, M. et al. Total synthesis and biological evaluation of rakicidin A and discovery of a simplified bioactive analogue. Angew. Chem. Int. Ed. 55, 1030–1035 (2016).

    Article  CAS  Google Scholar 

  14. Hu, J.-F. et al. Rakicidin C, a new cyclic depsipeptide from Streptomyces sp. Eur. J. Org. Chem. 3353–3356 (2000).

    Article  Google Scholar 

  15. Igarashi, Y. et al. Rakicidin D, an inhibitor of tumor cell invasion from marine-derived Streptomyces sp. J. Antibiot. 63, 563–565 (2010).

    Article  CAS  Google Scholar 

  16. Igarashi, M. et al. Vinylamycin, a new depsipeptide antibiotic, from Streptomyces sp. J. Antibiot. 52, 873–879 (1999).

    Article  CAS  Google Scholar 

  17. Yang, Z. et al. Total synthesis and determination of the absolute configuration of vinylamycin. Org. Lett. 17, 5725–5727 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Carr, G. et al. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin. Org. Lett. 14, 2822–2825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Z. et al. Determination of the absolute configurations of microtermolides A and B. J. Nat. Prod. 79, 2408–2412 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Tsakos, M., Jacobsen, K. M., Yu, W., Villadsen, N. L. & Poulsen, T. B. The rakicidin family of anticancer natural products—synthetic strategies towards a new class of hypoxia-selective cytotoxins. Synlett. 27, 1898–1906 (2016).

    Article  CAS  Google Scholar 

  21. Shirokawa, S.-I. et al. Remote asymmetric induction with vinylketene silyl N,O-acetal. J. Am. Chem. Soc. 126, 13604–13605 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Mukaeda, Y., Kato, T. & Hosokawa, S. Syn-selective Kobayashi aldol reaction using the E,E-vinylketene silyl N,O-acetal. Org. Lett. 14, 5298–5301 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Pittelkow, M., Kamounah, F. S., Boas, U., Pedersen, B. & Christensen, J. B. TFFH as an excellent reagent for acylation of alcohols, thiols and dithiocarbamates. Synthesis 2482–2492 (2004).

  24. Tsakos, M., Schaffert, E. S., Clement, L. L., Villadsen, N. L. & Poulsen, T. B. Ester coupling reactions—an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 32, 605–632 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Bennani, Y. L. & Sharpless, K. B. Asymmetric dihydroxylation (AD) of N,N-dialkyl and N-methoxy-N-methyl α,β- and β,γ-unsaturated amides. Tetrahedron Lett. 34, 2079–2082 (1993).

    Article  CAS  Google Scholar 

  26. Dupau, P., Epple, R., Thomas, A. A., Fokin, V. V. & Sharpless, K. B. Osmium-catalyzed dihydroxylation of olefins in acidic media: old process, new tricks. Adv. Synth. Catal. 344, 421–433 (2002).

    Article  CAS  Google Scholar 

  27. Plietker, B. RuO4-catalyzed ketohydroxylation of olefins. J. Org. Chem. 68, 7123–7125 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ozanne, A., Pouységu, L., Depernet, D., François, B. & Quideau, S. A stabilized formulation of IBX (sIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers. Org. Lett. 5, 2903–2906 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Schauer, D. & Helquist, P. Mild zinc-promoted Horner–Wadsworth–Emmons reactions of diprotic phosphonate reagents. Synthesis 3654–3660 (2006).

  30. Albright, J. C., Goering, A. W., Doroghazi, J. R., Metcalf, W. W. & Kelleher, N. L. Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 41, 451–459 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Waters, A. L. et al. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A. Front. Mar. Sci. 1, 6919 (2014).

    Article  Google Scholar 

  32. Abdelmohsen, U. R. et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jensen, P. R. & Mafnas, C. Biogeography of the marine actinomycete Salinispora. Environ. Microbiol. 8, 1881–1888 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Weissman, K. J. et al. The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36, 13849–13855 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Valenzano, C. R., Lawson, R. J., Chen, A. Y., Khosla, C. & Cane, D. E. The biochemical basis for stereochemical control in polyketide biosynthesis. J. Am. Chem. Soc. 131, 18501–18511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng, J. & Keatinge-Clay, A. T. Structural and functional analysis of C2-type ketoreductases from modular polyketide synthases. J. Mol. Biol. 410, 105–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Jensen, F., Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets. J. Chem. Theory Comput. 10, 1074–1085 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175–180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Demain, A. L. & Fang, A. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol. 69, 1–39 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the laboratories of M. T. Hamann and R. T. Hill for providing Micromonospora sp. Strain M42, U. R. Abdelmohsen and U. Hentschel Humeida for providing Micromonospora sp. Strain RV43 and P. Jensen for providing Salinospora arenicola CNR107. C. Bak Nielsen is acknowledged for technical assistance. T.B.P. gratefully acknowledges support from the Lundbeck Foundation (fellow grant R105-A9308) and the Carlsberg Foundation (grant CF15-0431). T.T. gratefully acknowledges support from the Danish Council for Independent Research (DFF – 4181-00315).

Author information

Authors and Affiliations

Authors

Contributions

T.B.P. conceived and supervised the study, T.B.P., T.T. and N.L.V. designed the experiments. N.L.V., E.T.W., B.C. and U.B.K. performed the organic synthesis. K.M.J. conducted cytotoxicity experiments. N.L.V. and T.T. performed the bacterial fermentations and isolations, T.T. conducted the bioinformatic studies, U.B.K. and F.J. performed the computational studies. M.J., M.B. and T.V. helped with MS and NMR analyses. T.B.P., T.T. and N.L.V. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Thomas Tørring or Thomas B. Poulsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villadsen, N., Jacobsen, K., Keiding, U. et al. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products. Nature Chem 9, 264–272 (2017). https://doi.org/10.1038/nchem.2657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2657

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer