Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms

Abstract

Stereodynamics describes how the vector properties of molecules, such as the directions in which they move and the axes about which they rotate, affect the probabilities (or cross-sections) of specific processes or transitions that occur on collision. The main aspects of stereodynamics in inelastic atom–molecule collisions can often be understood from classical considerations, in which the particles are represented by billiard-ball-like hard objects. In a quantum picture, however, the collision is described in terms of matter waves, which can also scatter into the region of the geometrical shadow of the object and reveal detailed information on the pure quantum-mechanical contribution to the stereodynamics. Here we present measurements of irregular diffraction patterns for NO radicals colliding with rare-gas atoms that can be explained by the analytical Fraunhofer model. They reveal a hitherto overlooked dependence on (or ‘propensity rule’ for) the magnetic quantum number m of the molecules, and a previously unrecognized type of quantum stereodynamics that has no classical analogue or interpretation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration of the classical and wave-like regimes that we use to describe stereodynamics in molecular collisions.
Figure 2: DCSs for NO radicals colliding with various rare-gas atoms resulting from the QMCC calculations (red solid curve) and the Fraunhofer model (black dashed curve).
Figure 3: Angular distributions and DCSs for NO radicals colliding with various rare-gas atoms.
Figure 4: The m,m′-resolved DCSs obtained from the QMCC calculations in the scattering frame.
Figure 5: Illustration of the stereodynamics for NO + Ar, j′ = 11/2,e collisions, for which κ = 6, leading to the irregular diffraction peak.

References

  1. van de Meerakker, S. Y. T., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828–4878 (2012).

    CAS  PubMed  Google Scholar 

  2. Heck, A. J. R. & Chandler, D. W. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46, 335–372 (1995).

    CAS  PubMed  Google Scholar 

  3. Ashfold, M. N. R. et al. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8, 26–53 (2006).

    CAS  PubMed  Google Scholar 

  4. Aoiz, F. J. et al. A new perspective: imaging the stereochemistry of molecular collisions. Phys. Chem. Chem. Phys. 17, 30210–30228 (2015).

    CAS  PubMed  Google Scholar 

  5. Wang, F., Liu, K. & Rakitzis, T. P. Revealing the stereospecific chemistry of the reaction of Cl with aligned CHD3 (v1 = 1). Nat. Chem. 4, 636–641 (2012).

    CAS  PubMed  Google Scholar 

  6. Orr-Ewing, A. J. & Zare, R. N. Orientation and alignment of reaction products. Annu. Rev. Phys. Chem. 45, 315–366 (1994).

    CAS  Google Scholar 

  7. Herschbach, D. Chemical stereodynamics: retrospect and prospect. Eur. Phys. J. D 38, 3–13 (2006).

    CAS  Google Scholar 

  8. Costen, M. L., Marinakis, S. & McKendrick, K. G. Do vectors point the way to understanding energy transfer in molecular collisions? Chem. Soc. Rev. 37, 732–743 (2008).

    CAS  PubMed  Google Scholar 

  9. McCaffery, A. J., Proctor, M. J. & Whitaker, B. J. Rotational energy transfer: polarization and scaling. Annu. Rev. Phys. Chem. 37, 223–244 (1986).

    CAS  Google Scholar 

  10. Aquilanti, V., Cavalli, S., Grossi, G. & Anderson, R. W. Stereodirected states in molecular dynamics: a discrete basis representation for the quantum mechanical scattering matrix. J. Phys. Chem. 95, 8184–8193 (1991).

    CAS  Google Scholar 

  11. Aoiz, F. J., Herrero, V. J., Sáez-Rábanos, V. & Verdasco, J. E. Classical stereodynamics in Ar + NO inelastic collisions. Phys. Chem. Chem. Phys. 6, 4407–4415 (2004).

    CAS  Google Scholar 

  12. Brouard, M., Chadwick, H., Eyles, C. J., Aoiz, F. J. & Kłos, J. The kjj′ vector correlation in inelastic and reactive scattering. J. Chem. Phys. 135, 084305 (2011).

    CAS  PubMed  Google Scholar 

  13. Jambrina, P. G., Kłos, J., Aoiz, F. J. & de Miranda, M. P. New findings regarding the NO angular momentum orientation in Ar–NO(2Π1/2) collisions. Phys. Chem. Chem. Phys. 14, 9826–9837 (2012).

    CAS  PubMed  Google Scholar 

  14. Balint-Kurti, G. G. & Vasyutinskii, O. S. Vector correlation analysis for inelastic and reactive collisions between partners possessing spin and orbital angular momentum. J. Phys. Chem. A 113, 14281–14290 (2009).

    CAS  PubMed  Google Scholar 

  15. Lorenz, K. T. et al. Direct measurement of the preferred sense of NO rotation after collision with argon. Science 293, 2063–2066 (2001).

    CAS  PubMed  Google Scholar 

  16. Paterson, G., Costen, M. L. & McKendrick, K. G. Collisional depolarization of rotational angular momentum: what are the observables and how can they be measured? Mol. Phys. 109, 2565–2585 (2011).

    CAS  Google Scholar 

  17. Paterson, G., Costen, M. L. & McKendrick, K. G. Collisional depolarisation of rotational angular momentum: influence of the potential energy surface on the collision dynamics? Int. Rev. Phys. Chem. 31, 69–109 (2012).

    CAS  Google Scholar 

  18. Chadwick, H., Brouard, M., Perkins, T. & Aoiz, F. J. Collisional depolarisation in electronically excited radicals. Int. Rev. Phys. Chem. 33, 79–123 (2014).

    CAS  Google Scholar 

  19. Nichols, B. et al. Steric effects and quantum interference in the inelastic scattering of NO(X) + Ar. Chem. Sci. 6, 2202–2210 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stolte, S. Aiming the molecular arrow. Nature 353, 391–392 (1991).

    Google Scholar 

  21. Case, D. A. & Herschbach, D. R. Statistical theory of angular momentum polarization in chemical reactions. Mol. Phys. 30, 1537–1564 (1975).

    CAS  Google Scholar 

  22. Case, D. A., McClelland, G. M. & Herschbach, D. R. Angular momentum polarization in molecular collisions: classical and quantum theory for measurements using resonance fluorescence. Mol. Phys. 35, 541–573 (1978).

    CAS  Google Scholar 

  23. Barnwell, J. D., Loeser, J. G. & Herschbach, D. R. Angular correlations in chemical reactions. Statistical theory for four-vector correlations. J. Phys. Chem. 87, 2781–2786 (1983).

    CAS  Google Scholar 

  24. Chandler, D. W. & Stolte, S. in Gas Phase Molecular Reaction and Photodissociation Dynamics (eds Lin, K. C. & Kleiber, P. D.) 1–63 (Transworld Research Network, 2007).

    Google Scholar 

  25. Schiffman, A. & Chandler, D. W. Experimental measurements of state-resolved, rotationally inelastic energy transfer. Int. Rev. Phys. Chem. 14, 371–420 (1995).

    CAS  Google Scholar 

  26. Kohguchi, H. & Suzuki, T. State-to-state rotational inelastic scattering of free radicals. Annu. Rep. Prog. Chem. C 98, 421–449 (2002).

    CAS  Google Scholar 

  27. Schreel, K., Schleipen, J., Eppink, A. & ter Meulen, J. J. State-to-state cross sections for rotational excitation of OH by collisions with He and Ar. J. Chem. Phys. 99, 8713–8722 (1993).

    CAS  Google Scholar 

  28. Kohguchi, H., Suzuki, T. & Alexander, M. H. Fully state-resolved differential cross sections for the inelastic scattering of the open-shell NO molecule by Ar. Science 294, 832–834 (2001).

    CAS  PubMed  Google Scholar 

  29. Khare, V., Kouri, D. J. & Hoffman, D. K. On j z-preserving propensities in molecular collisions. I. Quantal coupled states and classical impulsive approximations. J. Chem. Phys. 74, 2275–2286 (1981).

    Google Scholar 

  30. Khare, V., Kouri, D. J. & Hoffman, D. K. On a j z-preserving propensity in molecular collisions. II. Close-coupling study of state-to-state differential cross sections. J. Chem. Phys. 76, 4493–4501 (1982).

    CAS  Google Scholar 

  31. Brouard, M. et al. Rotational alignment effects in NO(X) + Ar inelastic collisions: a theoretical study. J. Chem. Phys. 138, 104309 (2013).

    CAS  PubMed  Google Scholar 

  32. Cline, J. I., Lorenz, K. T., Wade, E. A., Barr, J. W. & Chandler, D. W. Ion imaging measurement of collision-induced rotational alignment in Ar–NO scattering. J. Chem. Phys. 115, 6277–6280 (2001).

    CAS  Google Scholar 

  33. Brouard, M., Hornung, B. & Aoiz, F. J. Origin of collision-induced molecular orientation. Phys. Rev. Lett. 111, 183202 (2013).

    CAS  PubMed  Google Scholar 

  34. Steill, J. D. et al. Rotational alignment of NO (A2+) from collisions with Ne. J. Phys. Chem. A 117, 8163–8174 (2013).

    CAS  PubMed  Google Scholar 

  35. Orlikowski, T. & Alexander, M. H. Lack of M-preserving propensities in rotationally inelastic collisions of NO(X2Π1/2). J. Chem. Phys. 80, 4133–4136 (1984).

    CAS  Google Scholar 

  36. Faubel, M. The ‘Fraunhofer theory’ of rotational inelastic scattering of He on small molecules. J. Chem. Phys. 81, 5559–5569 (1984).

    CAS  Google Scholar 

  37. Lemeshko, M. & Friedrich, B. An analytic model of rotationally inelastic collisions of polar molecules in electric fields. J. Chem. Phys. 129, 024301 (2008).

    PubMed  Google Scholar 

  38. Lemeshko, M., Jambrina, P. G., de Miranda, M. P. & Friedrich, B. Communications: when diffraction rules the stereodynamics of rotationally inelastic collisions. J. Chem. Phys. 132, 161102 (2010).

    PubMed  Google Scholar 

  39. Lemeshko, M. & Friedrich, B. An analytic model of the stereodynamics of rotationally inelastic molecular collisions. Phys. Chem. Chem. Phys. 12, 1038–1041 (2010).

    CAS  PubMed  Google Scholar 

  40. Onvlee, J., Vogels, S. N., van der Avoird, A., Groenenboom, G. C. & van de Meerakker, S. Y. T. Resolving rainbows with superimposed diffraction oscillations in NO + rare gas scattering: experiment and theory. New J. Phys. 17, 055019 (2015).

    Google Scholar 

  41. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    CAS  Google Scholar 

  42. Chandler, D. W. & Houston, P. L. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987).

    CAS  Google Scholar 

  43. Scharfenberg, L. et al. Scattering of Stark-decelerated OH radicals with rare-gas atoms. Eur. Phys. J. D 65, 189–198 (2011).

    CAS  Google Scholar 

  44. Kłos, J., Chałasiński, G., Berry, M. T., Bukowski, R. & Cybulski, S. M. Ab initio potential-energy surface for the He(1S) + NO(X2Π) interaction and bound rovibrational states. J. Chem. Phys. 112, 2195–2203 (2000).

    Google Scholar 

  45. Alexander, M. H. A new, fully ab initio investigation of the NO (X2Π)Ar system. I. Potential energy surfaces and inelastic scattering. J. Chem. Phys. 111, 7426–7434 (1999).

    CAS  Google Scholar 

  46. Wen, B., Meyer, H., Kłos, J. & Alexander, M. H. Joint experimental–theoretical investigation of the lower bound states of the NO(X2Π)–Kr complex. J. Phys. Chem. A 113, 7366–7375 (2009).

    CAS  PubMed  Google Scholar 

  47. Kłos, J. et al. Ab initio studies of the interaction potential for the Xe-NO(X2Π) van der Waals complex: bound states and fully quantum and quasi-classical scattering. J. Chem. Phys. 137, 014312 (2012).

    PubMed  Google Scholar 

  48. Yan, B. et al. A new high intensity and short-pulse molecular beam valve. Rev. Sci. Instrum. 84, 023102 (2013).

    CAS  PubMed  Google Scholar 

  49. Vogels, S. N. et al. High-resolution imaging of velocity-controlled molecular collisions using counterpropagating beams. Phys. Rev. Lett. 113, 263202 (2014).

    PubMed  Google Scholar 

  50. Dribinski, V., Ossadtchi, A., Mandelshtam, V. A. & Reisler, H. Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method. Rev. Sci. Instrum. 73, 2634–2642 (2002).

    CAS  Google Scholar 

  51. Aoiz, F. J., Verdasco, J. E., Herrero, V. J., Sáez Rábanos, V. & Alexander, M. A. Attractive and repulsive interactions in the inelastic scattering of NO by Ar: a comparison between classical trajectory and close-coupling quantum mechanical results. J. Chem. Phys. 119, 5860–5866 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 335646 MOLBIL. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organization for Scientific Research (NWO). S.Y.T.v.d.M. acknowledges support from NWO via a VIDI and a TOP grant. The support of the UK EPSRC (to M.B. via Programme Grant EP/L005913/1) is gratefully acknowledged. S.D.S.G and M.B thank Cambio Ltd and P. Dean for generous support. The authors thank M. Lemeshko for carefully reading the manuscript and for valuable suggestions. Moreover, we thank L. Gerritsen, C. Berkhout, P. Claus, N. Janssen and A. van Roij for expert technical support.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by S.Y.T.v.d.M. and M.B. The experiments were carried out by S.N.V. Data analysis and simulations were performed by J.O. and S.N.V. Scattering calculations were performed by J.O. using a scattering program developed by G.C.G. and A.v.d.A. The interpretation of the data using the Fraunhofer model was performed by J.O., A.v.d.A., G.C.G. and S.Y.T.v.d.M. with input from S.D.S.G., T.A., T.K., B.N. and M.B. The explanation of vector correlations based on the Fraunhofer model and the Huygens principle was developed by G.C.G., A.v.d.A., T.K., J.O. and S.Y.T.v.d.M. The ESA calculations were performed by T.K. The kinematic apse model calculations were performed by S.D.S.G. The paper was written by J.O. and S.Y.T.v.d.M. with contributions from all the authors.

Corresponding authors

Correspondence to Gerrit C. Groenenboom, Mark Brouard or Sebastiaan Y. T. van de Meerakker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onvlee, J., Gordon, S., Vogels, S. et al. Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms. Nature Chem 9, 226–233 (2017). https://doi.org/10.1038/nchem.2640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing