Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials and methods for delivery of biological drugs

Abstract

Biological drugs generated via recombinant techniques are uniquely positioned due to their high potency and high selectivity of action. The major drawback of this class of therapeutics, however, is their poor stability upon oral administration and during subsequent circulation. As a result, biological drugs have very low bioavailability and short therapeutic half-lives. Fortunately, tools of chemistry and biotechnology have been developed into an elaborate arsenal, which can be applied to improve the pharmacokinetics of biological drugs. Depot-type release systems are available to achieve sustained release of drugs over time. Conjugation to synthetic or biological polymers affords long circulating formulations. Administration of biological drugs through non-parenteral routes shows excellent performance and the first products have reached the market. This Review presents the main accomplishments in this field and illustrates the materials and methods behind existing and upcoming successful formulations and delivery strategies for biological drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Biodegradable organic polymers can be used to engineer implantable depots for controlled release of biological drugs over extended periods of time.
Figure 2: Assembly of surface coatings.
Figure 3: Conjugation of biological drugs with synthetic non-ionic water-soluble polymers.
Figure 4: Recombinant techniques constitute a highly successful approach to engineer derivatives of biological drugs with markedly extended blood residence time.
Figure 5: Physiological recycling of albumin and immunoglobulins.
Figure 6: Examples of non-invasive drug administration routes.
Figure 7: Transdermal administration of biological drugs.

References

  1. Brown, L. R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv. 2, 29–42 (2005).

    Article  PubMed  Google Scholar 

  2. Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genom. Hum. G. 13, 307–335 (2012).

    Article  CAS  Google Scholar 

  3. Gu, Z., Biswas, A., Zhao, M. & Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 40, 3638–3655 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Torchilin, V. Intracellular delivery of protein and peptide therapeutics. Drug Discov. Today Technol. 5, e95–e103 (2008).

    Article  PubMed  Google Scholar 

  5. Pashuck, E. T. & Stevens, M. M. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4, 160sr4 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. & Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Greiner, A. & Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 46, 5670–5703 (2007).

    Article  CAS  Google Scholar 

  9. Mundargi, R. C., Babu, V. R., Rangaswamy, V., Patel, P. & Aminabhavi, T. M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J. Control. Release 125, 193–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Karnik, R. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 8, 2906–2912 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Enlow, E. M., Luft, J. C., Napier, M. E. & DeSimone, J. M. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett. 11, 808–813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, C.-S., Wu, H.-C., Sun, J.-S., Hsiao, H.-M. & Wang, T.-W. Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Applied Mater. Interf. 5, 10985–10994 (2013).

    Article  CAS  Google Scholar 

  13. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cawley, P., Wilkinson, I. & Ross, R. J. Developing long-acting growth hormone formulations. Clin. Endocrinol. 79, 305–309 (2013).

    Article  CAS  Google Scholar 

  15. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. & Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Vlierberghe, S., Dubruel, P. & Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 1387–1408 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., Rodrigues, J. & Tomas, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41, 2193–2221 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, C. C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  21. Lozinsky, V. I. & Plieva, F. M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb. Technol. 23, 227–242 (1998).

    Article  CAS  Google Scholar 

  22. Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M. & O'Connor, A. J. Cryogels for biomedical applications. J. Mater. Chem. B 1, 2682–2695 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jensen, B. E. B., Edlund, K. & Zelikin, A. N. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors. Biomaterials 49, 113–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Fang, R. C. & Galiano, R. D. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics 2, 1–12 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rehfeldt, F., Engler, A. J., Eckhardt, A., Ahmed, F. & Discher, D. E. Cell responses to the mechanochemical microenvironment — implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59, 1329–1339 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong, J. Y., Velasco, A., Rajagopalan, P. & Pham, Q. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913 (2003).

    Article  CAS  Google Scholar 

  28. Discher, D. E., Sweeney, L., Sen, S. & Engler, A. Matrix elasticity directs stem cell lineage specification. Biophys. J. 32a–32a (2007).

  29. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zelikin, A. N. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano 4, 2494–2509 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Shukla, A., Fang, J. C., Puranam, S., Jensen, F. R. & Hammond, P. T. Hemostatic multilayer coatings. Adv. Mater. 24, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, X. Y. et al. The influence of arrangement sequence on the glucose-responsive controlled release profiles of insulin-incorporated LbL films. Acta Biomater. 8, 4380–4388 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Crouzier, T., Szarpak, A., Boudou, T., Auzely-Velty, R. & Picart, C. Polysaccharide-blend multi layers containing hyaluronan and heparin as a delivery system for rhBMP-2. Small 6, 651–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Dierich, A. et al. Bone formation mediated by synergy-acting growth factors embedded in a polyelectrolyte multilayer film. Adv. Mater. 19, 693–697 (2007).

    Article  CAS  Google Scholar 

  35. Shah, N. J. et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci. Transl. Med. 5, 191ra83 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mendelsohn, J. D., Yang, S. Y., Hiller, J., Hochbaum, A. I. & Rubner, M. F. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 4, 96–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kocgozlu, L. et al. Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. J. Cell Sci. 123, 29–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Saurer, E. M., Flessner, R. M., Sullivan, S. P., Prausnitz, M. R. & Lynn, D. M. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11, 3136–3143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saurer, E. M. et al. Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue. Biomacromolecules 14, 1696–1704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Cock, L. J. et al. Layer-by-layer incorporation of growth factors in decellularized aortic heart valve leaflets. Biomacromolecules 11, 1002–1008 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Thierry, B., Winnik, F. M., Merhi, Y. & Tabrizian, M. Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J. Am. Chem. Soc. 125, 7494–7495 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Kerdjoudj, H. et al. Small vessel replacement by human umbilical arteries with polyelectrolyte film-treated arteries in vivo behavior. J. Am. Coll. Cardiol. 52, 1589–1597 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Shah, N. J. et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32, 6183–6193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cezar, C. A. & Mooney, D. J. Biomaterial-based delivery for skeletal muscle repair. Adv. Drug Deliv. Rev. 84, 188–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Lam, J., Lu, S., Kasper, F. K. & Mikos, A. G. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Bechler, S. L. et al. Reduction of intimal hyperplasia in injured rat arteries promoted by catheter balloons coated with polyelectrolyte multilayers that contain plasmid DNA encoding PKC delta. Biomaterials 34, 226–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Kontos, S. & Hubbell, J. A. Drug development: longer-lived proteins. Chem. Soc. Rev. 41, 2686–2695 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    Article  CAS  Google Scholar 

  49. Davis, F. F. The origin of pegnology. Adv. Drug Deliv. Rev. 54, 457–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ravin, H. A., Seligman, A. M. & Fine, J. Polyvinyl pyrrolidone as a plasma expander. New Eng. J. Med. 247, 921–929 (1952).

    Article  CAS  PubMed  Google Scholar 

  51. Kojima, Y. & Maeda, H. Evaluation of poly(vinyl alcohol) for protein tailoring: improvements in pharmacokinetic properties of superoxide dismutase. J. Bioact. Comp. Polym. 8, 115–131 (1993).

    Article  Google Scholar 

  52. Torchilin, V. P. et al. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. 84, 1049–1053 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Yamaoka, T., Tabata, Y. & Ikada, Y. Fate of water-soluble polymers administered via different routes. J. Pharm. Sci. 84, 349–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Zelikin, A. N., Such, G. K., Postma, A. & Caruso, F. Poly(vinylpyrrolidone) for bioconjugation and surface ligand immobilization. Biomacromolecules 8, 2950–2953 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Smith, A. A. A. et al. Macromolecular design of poly(vinyl alcohol) by RAFT polymerization. Polym. Chem. 3, 85–88 (2012).

    Article  CAS  Google Scholar 

  56. Barz, M., Luxenhofer, R., Zentel, R. & Vicent, M. J. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polym. Chem. 2, 1900–1918 (2011).

    Article  CAS  Google Scholar 

  57. Pelegri-O'Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process. Aus. J. Chem. 58, 379–410 (2005).

    Article  CAS  Google Scholar 

  60. Rudmann, D. G., Alston, J. T., Hanson, J. C. & Heidel, S. High molecular weight polyethylene glycol cellular distribution and peg-associated cytoplasmic vacuolation is molecular weight dependent and does not require conjugation to proteins. Toxicol. Pathol. 41, 970–983 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Webster, R. et al. in PEGylated Protein Drugs: Basic Science and Clinical Applications Milestones in Drug Therapy (ed. Veronese, F.) 127–146 (Birkhäuser Basel, 2009).

    Book  Google Scholar 

  62. Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem. Rev. 109, 5528–5578 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ulbricht, J., Jordan, R. & Luxenhofer, R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35, 4848–4861 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Li, C. Poly(l-glutamic acid)–anticancer drug conjugates. Adv. Drug Deliv. Rev. 54, 695–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Schlapschy, M. et al. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Prot. Eng. Des. Sel. 26, 489–501 (2013).

    Article  CAS  Google Scholar 

  66. Morath, V. et al. PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy. Mol. Pharm. 12, 1431–1442 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Podust, V. N. et al. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer. Prot. Eng. Des. Sel. 26, 743–753 (2013).

    Article  CAS  Google Scholar 

  68. Schellenberger, V. et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotech. 27, 1186–1190 (2009).

    Article  CAS  Google Scholar 

  69. Sleep, D., Cameron, J. & Evans, L. R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta Gen. Subj. 1830, 5526–5534 (2013).

    Article  CAS  Google Scholar 

  70. Elsadek, B. & Kratz, F. Impact of albumin on drug delivery — new applications on the horizon. J. Control. Release 157, 4–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Mullard, A. Maturing antibody-drug conjugate pipeline hits 30. Nat. Rev. Drug Discov. 12, 329–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Jiang, X. R. et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 10, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Czajkowsky, D. M., Hu, J., Shao, Z. F. & Pleass, R. J. Fc-fusion proteins: new developments and future perspectives. EMBO Mol. Med. 4, 1015–1028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Andersen, J. T. et al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat. Commun. 3, 610 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Madsen, K. et al. Structure − activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J. Med. Chem. 50, 6126–6132 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Lau, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (glp-1) analogue semaglutide. J. Med. Chem. 58, 7370–7380 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harrison, G. A. Insulin in alcoholic solution by the mouth. Brit. Med. J. 1923, 1204–1205 (1923).

    Article  Google Scholar 

  79. Brown, L. R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv. 2, 29–42 (2005).

    Article  PubMed  Google Scholar 

  80. Goldberg, M. & Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2, 289–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Clement, S., Still, J. G., Kosutic, G. & McAllister, R. G. Oral insulin product hexyl-insulin monoconjugate 2 (HIM2) in type 1 diabetes mellitus: the glucose stabilization effects of HIM2. Diabetes Technol. Ther. 4, 459–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Sosnik, A., das Neves, J. & Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog. Polym. Sci. 39, 2030–2075 (2014).

    Article  CAS  Google Scholar 

  84. Khutoryanskiy, V. V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 11, 748–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Bernkop-Schnurch, A. Thiomers: a new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 57, 1569–1582 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Russell-Jones, G. J. Use of vitamin B12 conjugates to deliver protein drugs by the oral route. Crit. Rev. Ther. Drug Carrier Syst. 15, 557–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Petrus, A. K., Fairchild, T. J. & Doyle, R. P. Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs. Angew. Chem. Int. Ed. 48, 1022–1028 (2009).

    Article  CAS  Google Scholar 

  88. Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schulz, J. D., Gauthier, M. A. & Leroux, J. C. Improving oral drug bioavailability with polycations? Eur. J. Pharm. Biopharm. 97, 427–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Binkley, N. et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the oral calcitonin in postmenopausal osteoporosis (ORACAL) trial. J. Bone Miner. Res. 27, 1821–1829 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Maggio, E. T. & Pillion, D. J. High efficiency intranasal drug delivery using Intravail alkylsaccharide absorption enhancers. Drug Deliv. Transl. Res. 3, 16–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Heinemann, L. & Jacques, Y. Oral insulin and buccal insulin: a critical reappraisal. J. Diab. Sci. Technol. 3, 568–584 (2009).

    Article  Google Scholar 

  93. Whitehead, K., Karr, N. & Mitragotri, S. Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 25, 1782–1788 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Whitehead, K., Karr, N. & Mitragotri, S. Discovery of synergistic permeation enhancers for oral drug delivery. J. Control. Release 128, 128–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Malkov, D. et al. Oral delivery of insulin with the eligen technology: mechanistic studies. Curr. Drug Deliv. 2, 191–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Heubner, W., de Jongh, S. E. & Laquer, E. Über Inhalation von Insulin. Klinische Wochenschrift 3, 2342–2343 (1924).

    Article  CAS  Google Scholar 

  97. Siekmeier, R. & Scheuch, G. Systemic treatment by inhalation of macromolecules — principles, problems, and examples. J. Physiol. Pharmacol. 59, 53–79 (2008).

    PubMed  Google Scholar 

  98. Patton, J. S. et al. The particle has landed-characterizing the fate of inhaled pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 23, S71–S87 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Forbes, B. et al. Challenges in inhaled product development and opportunities for open innovation. Adv. Drug Deliv. Rev. 63, 69–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Pilcer, G. & Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Chow, A. H. L., Tong, H. H. Y., Chattopadhyay, P. & Shekunov, B. Y. Particle engineering for pulmonary drug delivery. Pharm. Res. 24, 411–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Johnson, K. A. Preparation of peptide and protein powders for inhalation. Adv. Drug Deliv. Rev. 26, 3–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Edwards, D. A., Ben-Jebria, A. & Langer, R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85, 379–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Patton, J. S. & Byron, P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Angelo, R., Rousseau, K., Grant, M., Leone-Bay, A. & Richardson, P. Technosphere insulin: defining the role of Technosphere particles at the cellular level. J. Diabetes Sci. Technol. 3, 545–554 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Siekmeier, R. & Scheuch, G. Treatment of systemic diseases by inhalation of biomolecule aerosols. J. Physiol. Pharmacol. 60, 15–26 (2009).

    PubMed  Google Scholar 

  107. Kim, Y. C., Park, J. H. & Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haq, M. I. et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed. Microdevices 11, 35–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Chu, L. Y. & Prausnitz, M. R. Separable arrowhead microneedles. J. Control. Release 149, 242–249 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Anton A.A. Smith, Lucy Kate Ladefoged, Cecilie Domar (Aarhus University), Helga Jonuschat (InnoZ), Uli Binder and Arne Skerra (XL-protein) for assistance in preparation of the illustrative material, Søren Ostegaard and Stephen Buckley (Novo Nordisk) for stimulating discussions. We also wish to acknowledge financial support from: the Danish Council for Independent Research, Technology and Production Sciences, Denmark (A.N.Z.), the European Research Council Consolidator grant (A.N.Z., ERC-2013-CoG 617336 BTVI), Science Foundation Ireland (A.M.H., SFI/12/RC/2275, SFI/12/RC2278, SFI/12/IP/1408) and the Flight Attendant Medical Research Institute (C.E., FAMRI CIA 130016). The contribution of the COST Actions BM1201 and MP1404 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander N. Zelikin or Carsten Ehrhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zelikin, A., Ehrhardt, C. & Healy, A. Materials and methods for delivery of biological drugs. Nature Chem 8, 997–1007 (2016). https://doi.org/10.1038/nchem.2629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing