Abstract
Biological drugs generated via recombinant techniques are uniquely positioned due to their high potency and high selectivity of action. The major drawback of this class of therapeutics, however, is their poor stability upon oral administration and during subsequent circulation. As a result, biological drugs have very low bioavailability and short therapeutic half-lives. Fortunately, tools of chemistry and biotechnology have been developed into an elaborate arsenal, which can be applied to improve the pharmacokinetics of biological drugs. Depot-type release systems are available to achieve sustained release of drugs over time. Conjugation to synthetic or biological polymers affords long circulating formulations. Administration of biological drugs through non-parenteral routes shows excellent performance and the first products have reached the market. This Review presents the main accomplishments in this field and illustrates the materials and methods behind existing and upcoming successful formulations and delivery strategies for biological drugs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Brown, L. R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv. 2, 29–42 (2005).
Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genom. Hum. G. 13, 307–335 (2012).
Gu, Z., Biswas, A., Zhao, M. & Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 40, 3638–3655 (2011).
Torchilin, V. Intracellular delivery of protein and peptide therapeutics. Drug Discov. Today Technol. 5, e95–e103 (2008).
Pashuck, E. T. & Stevens, M. M. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4, 160sr4 (2012).
Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).
Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. & Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999).
Greiner, A. & Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 46, 5670–5703 (2007).
Mundargi, R. C., Babu, V. R., Rangaswamy, V., Patel, P. & Aminabhavi, T. M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J. Control. Release 125, 193–209 (2008).
Karnik, R. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 8, 2906–2912 (2008).
Enlow, E. M., Luft, J. C., Napier, M. E. & DeSimone, J. M. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett. 11, 808–813 (2011).
Yang, C.-S., Wu, H.-C., Sun, J.-S., Hsiao, H.-M. & Wang, T.-W. Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Applied Mater. Interf. 5, 10985–10994 (2013).
Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).
Cawley, P., Wilkinson, I. & Ross, R. J. Developing long-acting growth hormone formulations. Clin. Endocrinol. 79, 305–309 (2013).
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).
Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. & Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009).
Van Vlierberghe, S., Dubruel, P. & Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 1387–1408 (2011).
Li, Y., Rodrigues, J. & Tomas, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41, 2193–2221 (2012).
Lin, C. C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009).
Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).
Lozinsky, V. I. & Plieva, F. M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb. Technol. 23, 227–242 (1998).
Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M. & O'Connor, A. J. Cryogels for biomedical applications. J. Mater. Chem. B 1, 2682–2695 (2013).
Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).
Jensen, B. E. B., Edlund, K. & Zelikin, A. N. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors. Biomaterials 49, 113–124 (2015).
Fang, R. C. & Galiano, R. D. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics 2, 1–12 (2008).
Rehfeldt, F., Engler, A. J., Eckhardt, A., Ahmed, F. & Discher, D. E. Cell responses to the mechanochemical microenvironment — implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59, 1329–1339 (2007).
Wong, J. Y., Velasco, A., Rajagopalan, P. & Pham, Q. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913 (2003).
Discher, D. E., Sweeney, L., Sen, S. & Engler, A. Matrix elasticity directs stem cell lineage specification. Biophys. J. 32a–32a (2007).
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Zelikin, A. N. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano 4, 2494–2509 (2010).
Shukla, A., Fang, J. C., Puranam, S., Jensen, F. R. & Hammond, P. T. Hemostatic multilayer coatings. Adv. Mater. 24, 492–496 (2012).
Chen, X. Y. et al. The influence of arrangement sequence on the glucose-responsive controlled release profiles of insulin-incorporated LbL films. Acta Biomater. 8, 4380–4388 (2012).
Crouzier, T., Szarpak, A., Boudou, T., Auzely-Velty, R. & Picart, C. Polysaccharide-blend multi layers containing hyaluronan and heparin as a delivery system for rhBMP-2. Small 6, 651–662 (2010).
Dierich, A. et al. Bone formation mediated by synergy-acting growth factors embedded in a polyelectrolyte multilayer film. Adv. Mater. 19, 693–697 (2007).
Shah, N. J. et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci. Transl. Med. 5, 191ra83 (2013).
Mendelsohn, J. D., Yang, S. Y., Hiller, J., Hochbaum, A. I. & Rubner, M. F. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 4, 96–106 (2003).
Kocgozlu, L. et al. Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. J. Cell Sci. 123, 29–39 (2010).
Saurer, E. M., Flessner, R. M., Sullivan, S. P., Prausnitz, M. R. & Lynn, D. M. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11, 3136–3143 (2010).
Saurer, E. M. et al. Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue. Biomacromolecules 14, 1696–1704 (2013).
De Cock, L. J. et al. Layer-by-layer incorporation of growth factors in decellularized aortic heart valve leaflets. Biomacromolecules 11, 1002–1008 (2010).
Thierry, B., Winnik, F. M., Merhi, Y. & Tabrizian, M. Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J. Am. Chem. Soc. 125, 7494–7495 (2003).
Kerdjoudj, H. et al. Small vessel replacement by human umbilical arteries with polyelectrolyte film-treated arteries in vivo behavior. J. Am. Coll. Cardiol. 52, 1589–1597 (2008).
Shah, N. J. et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32, 6183–6193 (2011).
Cezar, C. A. & Mooney, D. J. Biomaterial-based delivery for skeletal muscle repair. Adv. Drug Deliv. Rev. 84, 188–197 (2015).
Lam, J., Lu, S., Kasper, F. K. & Mikos, A. G. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015).
Bechler, S. L. et al. Reduction of intimal hyperplasia in injured rat arteries promoted by catheter balloons coated with polyelectrolyte multilayers that contain plasmid DNA encoding PKC delta. Biomaterials 34, 226–236 (2013).
Kontos, S. & Hubbell, J. A. Drug development: longer-lived proteins. Chem. Soc. Rev. 41, 2686–2695 (2012).
Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).
Davis, F. F. The origin of pegnology. Adv. Drug Deliv. Rev. 54, 457–458 (2002).
Ravin, H. A., Seligman, A. M. & Fine, J. Polyvinyl pyrrolidone as a plasma expander. New Eng. J. Med. 247, 921–929 (1952).
Kojima, Y. & Maeda, H. Evaluation of poly(vinyl alcohol) for protein tailoring: improvements in pharmacokinetic properties of superoxide dismutase. J. Bioact. Comp. Polym. 8, 115–131 (1993).
Torchilin, V. P. et al. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. 84, 1049–1053 (1995).
Yamaoka, T., Tabata, Y. & Ikada, Y. Fate of water-soluble polymers administered via different routes. J. Pharm. Sci. 84, 349–354 (1995).
Zelikin, A. N., Such, G. K., Postma, A. & Caruso, F. Poly(vinylpyrrolidone) for bioconjugation and surface ligand immobilization. Biomacromolecules 8, 2950–2953 (2007).
Smith, A. A. A. et al. Macromolecular design of poly(vinyl alcohol) by RAFT polymerization. Polym. Chem. 3, 85–88 (2012).
Barz, M., Luxenhofer, R., Zentel, R. & Vicent, M. J. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polym. Chem. 2, 1900–1918 (2011).
Pelegri-O'Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).
Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).
Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process. Aus. J. Chem. 58, 379–410 (2005).
Rudmann, D. G., Alston, J. T., Hanson, J. C. & Heidel, S. High molecular weight polyethylene glycol cellular distribution and peg-associated cytoplasmic vacuolation is molecular weight dependent and does not require conjugation to proteins. Toxicol. Pathol. 41, 970–983 (2013).
Webster, R. et al. in PEGylated Protein Drugs: Basic Science and Clinical Applications Milestones in Drug Therapy (ed. Veronese, F.) 127–146 (Birkhäuser Basel, 2009).
Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem. Rev. 109, 5528–5578 (2009).
Ulbricht, J., Jordan, R. & Luxenhofer, R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35, 4848–4861 (2014).
Li, C. Poly(l-glutamic acid)–anticancer drug conjugates. Adv. Drug Deliv. Rev. 54, 695–713 (2002).
Schlapschy, M. et al. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Prot. Eng. Des. Sel. 26, 489–501 (2013).
Morath, V. et al. PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy. Mol. Pharm. 12, 1431–1442 (2015).
Podust, V. N. et al. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer. Prot. Eng. Des. Sel. 26, 743–753 (2013).
Schellenberger, V. et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotech. 27, 1186–1190 (2009).
Sleep, D., Cameron, J. & Evans, L. R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta Gen. Subj. 1830, 5526–5534 (2013).
Elsadek, B. & Kratz, F. Impact of albumin on drug delivery — new applications on the horizon. J. Control. Release 157, 4–28 (2012).
Mullard, A. Maturing antibody-drug conjugate pipeline hits 30. Nat. Rev. Drug Discov. 12, 329–332 (2013).
Jiang, X. R. et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 10, 101–110 (2011).
Czajkowsky, D. M., Hu, J., Shao, Z. F. & Pleass, R. J. Fc-fusion proteins: new developments and future perspectives. EMBO Mol. Med. 4, 1015–1028 (2012).
Andersen, J. T. et al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat. Commun. 3, 610 (2012).
Madsen, K. et al. Structure − activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J. Med. Chem. 50, 6126–6132 (2007).
Lau, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (glp-1) analogue semaglutide. J. Med. Chem. 58, 7370–7380 (2015).
Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).
Harrison, G. A. Insulin in alcoholic solution by the mouth. Brit. Med. J. 1923, 1204–1205 (1923).
Brown, L. R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv. 2, 29–42 (2005).
Goldberg, M. & Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2, 289–295 (2003).
Clement, S., Still, J. G., Kosutic, G. & McAllister, R. G. Oral insulin product hexyl-insulin monoconjugate 2 (HIM2) in type 1 diabetes mellitus: the glucose stabilization effects of HIM2. Diabetes Technol. Ther. 4, 459–466 (2002).
Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).
Sosnik, A., das Neves, J. & Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog. Polym. Sci. 39, 2030–2075 (2014).
Khutoryanskiy, V. V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 11, 748–764 (2011).
Bernkop-Schnurch, A. Thiomers: a new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 57, 1569–1582 (2005).
Russell-Jones, G. J. Use of vitamin B12 conjugates to deliver protein drugs by the oral route. Crit. Rev. Ther. Drug Carrier Syst. 15, 557–586 (1998).
Petrus, A. K., Fairchild, T. J. & Doyle, R. P. Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs. Angew. Chem. Int. Ed. 48, 1022–1028 (2009).
Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013).
Schulz, J. D., Gauthier, M. A. & Leroux, J. C. Improving oral drug bioavailability with polycations? Eur. J. Pharm. Biopharm. 97, 427–437 (2015).
Binkley, N. et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the oral calcitonin in postmenopausal osteoporosis (ORACAL) trial. J. Bone Miner. Res. 27, 1821–1829 (2012).
Maggio, E. T. & Pillion, D. J. High efficiency intranasal drug delivery using Intravail alkylsaccharide absorption enhancers. Drug Deliv. Transl. Res. 3, 16–25 (2013).
Heinemann, L. & Jacques, Y. Oral insulin and buccal insulin: a critical reappraisal. J. Diab. Sci. Technol. 3, 568–584 (2009).
Whitehead, K., Karr, N. & Mitragotri, S. Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 25, 1782–1788 (2008).
Whitehead, K., Karr, N. & Mitragotri, S. Discovery of synergistic permeation enhancers for oral drug delivery. J. Control. Release 128, 128–133 (2008).
Malkov, D. et al. Oral delivery of insulin with the eligen technology: mechanistic studies. Curr. Drug Deliv. 2, 191–197 (2005).
Heubner, W., de Jongh, S. E. & Laquer, E. Über Inhalation von Insulin. Klinische Wochenschrift 3, 2342–2343 (1924).
Siekmeier, R. & Scheuch, G. Systemic treatment by inhalation of macromolecules — principles, problems, and examples. J. Physiol. Pharmacol. 59, 53–79 (2008).
Patton, J. S. et al. The particle has landed-characterizing the fate of inhaled pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 23, S71–S87 (2010).
Forbes, B. et al. Challenges in inhaled product development and opportunities for open innovation. Adv. Drug Deliv. Rev. 63, 69–87 (2011).
Pilcer, G. & Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19 (2010).
Chow, A. H. L., Tong, H. H. Y., Chattopadhyay, P. & Shekunov, B. Y. Particle engineering for pulmonary drug delivery. Pharm. Res. 24, 411–437 (2007).
Johnson, K. A. Preparation of peptide and protein powders for inhalation. Adv. Drug Deliv. Rev. 26, 3–15 (1997).
Edwards, D. A., Ben-Jebria, A. & Langer, R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85, 379–385 (1998).
Patton, J. S. & Byron, P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007).
Angelo, R., Rousseau, K., Grant, M., Leone-Bay, A. & Richardson, P. Technosphere insulin: defining the role of Technosphere particles at the cellular level. J. Diabetes Sci. Technol. 3, 545–554 (2009).
Siekmeier, R. & Scheuch, G. Treatment of systemic diseases by inhalation of biomolecule aerosols. J. Physiol. Pharmacol. 60, 15–26 (2009).
Kim, Y. C., Park, J. H. & Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012).
Haq, M. I. et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed. Microdevices 11, 35–47 (2009).
Chu, L. Y. & Prausnitz, M. R. Separable arrowhead microneedles. J. Control. Release 149, 242–249 (2011).
Acknowledgements
We wish to thank Anton A.A. Smith, Lucy Kate Ladefoged, Cecilie Domar (Aarhus University), Helga Jonuschat (InnoZ), Uli Binder and Arne Skerra (XL-protein) for assistance in preparation of the illustrative material, Søren Ostegaard and Stephen Buckley (Novo Nordisk) for stimulating discussions. We also wish to acknowledge financial support from: the Danish Council for Independent Research, Technology and Production Sciences, Denmark (A.N.Z.), the European Research Council Consolidator grant (A.N.Z., ERC-2013-CoG 617336 BTVI), Science Foundation Ireland (A.M.H., SFI/12/RC/2275, SFI/12/RC2278, SFI/12/IP/1408) and the Flight Attendant Medical Research Institute (C.E., FAMRI CIA 130016). The contribution of the COST Actions BM1201 and MP1404 is also acknowledged.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Zelikin, A., Ehrhardt, C. & Healy, A. Materials and methods for delivery of biological drugs. Nature Chem 8, 997–1007 (2016). https://doi.org/10.1038/nchem.2629
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2629
This article is cited by
-
Oral delivery of RNAi for cancer therapy
Cancer and Metastasis Reviews (2023)
-
Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein–protein interaction inhibitor
Nature Communications (2022)
-
Helical Nonfouling Polypeptides for Biomedical Applications
Chinese Journal of Polymer Science (2022)
-
Drug self-gating fluorescent nanoparticles for pH-responsive doxorubicin delivery
Journal of Materials Science (2020)
-
Engineered PLGA-PVP/VA based formulations to produce electro-drawn fast biodegradable microneedles for labile biomolecule delivery
Progress in Biomaterials (2020)