Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies

Abstract

Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry–mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4–9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of VEALYL oligomers and fibrils in the condensed phase and in the gas phase.
Figure 2: TEM images of VEALYL sequence variants.
Figure 3: IMS and conformer-selected infrared spectroscopy of YVEALL oligomers.
Figure 4: Correlation between increase in CCS and β-sheet fraction.

Similar content being viewed by others

References

  1. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  Google Scholar 

  2. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  3. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  Google Scholar 

  4. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  Google Scholar 

  5. Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  Google Scholar 

  6. Lesné, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  Google Scholar 

  7. Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl Acad. Sci. USA 108, 4194–4199 (2011).

    Article  CAS  Google Scholar 

  8. Lin, C.-Y. et al. Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes 56, 1324–1332 (2007).

    Article  CAS  Google Scholar 

  9. Gurlo, T. et al. Evidence for proteotoxicity in β cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am. J. Pathol. 176, 861–869 (2010).

    Article  CAS  Google Scholar 

  10. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  11. Ivanova, M. I., Sievers, S. A., Sawaya, M. R., Wall, J. S. & Eisenberg, D. Molecular basis for insulin fibril assembly. Proc. Natl Acad. Sci. USA 106, 18990–18995 (2009).

    Article  CAS  Google Scholar 

  12. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  13. Stromer, T. & Serpell, L. C. Structure and morphology of the Alzheimer's amyloid fibril. Microsc. Res. Tech. 67, 210–217 (2005).

    Article  CAS  Google Scholar 

  14. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  15. Matthes, D. et al. Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features. J. Mol. Biol. 426, 362–376 (2014).

    Article  CAS  Google Scholar 

  16. Cerf, E. et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem. J. 421, 415–423 (2009).

    Article  CAS  Google Scholar 

  17. Celej, M. S. et al. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochem. J. 443, 719–726 (2012).

    Article  CAS  Google Scholar 

  18. Buchanan, L. E. et al. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc. Natl Acad. Sci. USA 110, 19285–19290 (2013).

    Article  CAS  Google Scholar 

  19. Bernstein, S. L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat. Chem. 1, 326–331 (2009).

    Article  CAS  Google Scholar 

  20. Bleiholder, C., Dupuis, N. F., Wyttenbach, T. & Bowers, M. T. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat. Chem. 3, 172–177 (2011).

    Article  CAS  Google Scholar 

  21. Dupuis, N. F., Wu, C., Shea, J.-E. & Bowers, M. T. The amyloid formation mechanism in human IAPP: dimers have β-strand monomer–monomer interfaces. J. Am. Chem. Soc. 133, 7240–7243 (2011).

    Article  CAS  Google Scholar 

  22. Bleiholder, C. et al. Ion mobility spectrometry reveals the mechanism of amyloid formation of Aβ(25–35) and its modulation by inhibitors at the molecular level: epigallocatechin gallate and scyllo-inositol. J. Am. Chem. Soc. 135, 16926–16937 (2013).

    Article  CAS  Google Scholar 

  23. Do, T. D. et al. Effects of pH and charge state on peptide assembly: the YVIFL model system. J. Phys. Chem. B 117, 10759–10768 (2013).

    Article  CAS  Google Scholar 

  24. Do, T. D. et al. Interactions between amyloid-β and tau fragments promote aberrant aggregates: implications for amyloid toxicity. J. Phys. Chem. B 118, 11220–11230 (2014).

    Article  CAS  Google Scholar 

  25. Do, T. D. et al. Factors that drive peptide assembly from native to amyloid structures: experimental and theoretical analysis of [leu-5]-enkephalin mutants. J. Phys. Chem. B 118, 7247–7256 (2014).

    Article  CAS  Google Scholar 

  26. Young, L. M., Cao, P., Raleigh, D. P., Ashcroft, A. E. & Radford, S. E. Ion mobility spectrometry–mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc. 136, 660–670 (2014).

    Article  CAS  Google Scholar 

  27. Young, L. M. et al. Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nat. Chem. 7, 73–81 (2015).

    Article  CAS  Google Scholar 

  28. Zheng, X. Y. et al. Amyloid β-protein assembly: the effect of molecular tweezers CLR01 and CLR03. J. Phys. Chem. B 119, 4831–4841 (2015).

    Article  CAS  Google Scholar 

  29. Jackson, M. & Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 30, 95–120 (1995).

    Article  CAS  Google Scholar 

  30. Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767, 1073–1101 (2007).

    Article  CAS  Google Scholar 

  31. Oomens, J., Sartakov, B. G., Meijer, G. & von Helden, G. Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. Int. J. Mass Spectrom. 254, 1–19 (2006).

    Article  CAS  Google Scholar 

  32. Papadopoulos, G., Svendsen, A., Boyarkin, O. V. & Rizzo, T. R. Spectroscopy of mobility-selected biomolecular ions. Faraday Discuss. 150, 243–255 (2010).

    Article  Google Scholar 

  33. Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    Article  CAS  Google Scholar 

  34. Schöllkopf, W. et al. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin, Advances in X-ray Free-Electron Lasers Instrumentation III (ed. Briedon, S.G.) (Proc. of SPIE Vol. 9512, SPIE, 2015).

    Google Scholar 

  35. Cai, S. & Singh, B. R. A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 43, 2541–2549 (2004).

    Article  CAS  Google Scholar 

  36. Bleiholder, C., Wyttenbach, T. & Bowers, M. T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections. (I) Method. Int. J. Mass Spectrom. 308, 1–10 (2011).

    Article  CAS  Google Scholar 

  37. Wyttenbach, T., Bleiholder, C. & Bowers, M. T. Factors contributing to the collision cross section of polyatomic ions in the kilodalton to gigadalton range: application to ion mobility measurements. Anal. Chem. 85, 2191–2199 (2013).

    Article  CAS  Google Scholar 

  38. Marklund, E. G., Degiacomi, M. T., Baldwin, A. J. & Benesch, J. L. P. Collision cross sections for structural proteomics. Structure 23, 1–9 (2015).

    Article  Google Scholar 

  39. Atherton, E. & Sheppard, R. C. Solid Phase Peptide Synthesis: A Practical Approach (Oxford Univ. Press, 1989).

    Google Scholar 

  40. Warnke, S., von Helden, G. & Pagel, K. Protein structure in the gas phase: the influence of side-chain microsolvation. J. Am. Chem. Soc. 135, 1177–1180 (2013).

    Article  CAS  Google Scholar 

  41. Warnke, S., Baldauf, C., Bowers, M. T., Pagel, K. & von Helden, G. Photodissociation of conformer-selected ubiquitin ions reveals site-specific cis/trans isomerization of proline peptide bonds. J. Am. Chem. Soc. 136, 10308–10314 (2014).

    Article  CAS  Google Scholar 

  42. Warnke, S. et al. Protomers of benzocaine: solvent and permittivity dependence. J. Am. Chem. Soc. 137, 4236–4242 (2015).

    Article  CAS  Google Scholar 

  43. Kemper, P. R., Dupuis, N. F. & Bowers, M. T. A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287, 46–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Huhmann for the help during synthesis, L. Urner for fruitful discussion and R. Schlögl for proofreading the manuscript. B. Koksch and M. Villinger are gratefully acknowledged for providing the peptide synthesis facilities and EM infrastructure. M.T.B. acknowledges the Alexander von Humboldt-Foundation and the National Science Foundation for support under grant CHE-1301032.

Author information

Authors and Affiliations

Authors

Contributions

J.S., W.H., M.T.B., G.v.H. and K.P. conceived and designed the experiments; J.S., W.H. and S.W. performed the experiments: X.H., S.G. and W.S. supported the experiments; J.S. and W.H. analysed data; all the authors co-wrote the paper. J.S. and W.H. contributed equally to this work.

Corresponding authors

Correspondence to Gert von Helden or Kevin Pagel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Hoffmann, W., Warnke, S. et al. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nature Chem 9, 39–44 (2017). https://doi.org/10.1038/nchem.2615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing