Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles

Abstract

Daisy chains (DCs) are garlands of flowers that can be worn as bracelets and necklaces. As a result of their beautiful interlocked structures and possible muscle-like motions, cyclic molecular DCs ([cn]DCs, where n is the number of repeating units) have long been attractive synthetic targets for supramolecular chemists. Herein we report artificial molecular muscles that—unlike one-dimensional (1D) biological muscles—contract and stretch in 2D or 3D. These systems have the structures of [c3]- and [c4]DCs with subcomponents that operate as molecular switches, powered through the addition or removal of Zn2+ ions to impart muscle-like behaviour. We assembled these [c3]- and [c4]DCs selectively by exploiting structural rigidity, coordination geometries and bond rotational barriers that disfavoured the formation of smaller homologues. The switching phenomena of our [c3]- and [c4]DCs resulted in the contracted molecular muscles stretching by approximately 23 and 36%, respectively, comparable to the value (27%) for linear biological muscles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DCs and their potential switching motions.
Figure 2: Chemical structures of the hermaphroditic monomers, and the unfavourable perpendicular torsional alignment required for the bipyridine–pyridine linkages in monomer 1 to assemble into a [c3]DC.
Figure 3: The switching operation of interlocked [c4]- and [c3]DCs revealed spectroscopically.
Figure 4: Syntheses of interlocked DCs.
Figure 5: Solid-state structures of cyclic DCs
Figure 6: Selectivity in assembling cyclic DCs from different monomers, and the different sizes of the two switching states of [c3]- and [c4]DCs.

Similar content being viewed by others

References

  1. Babcock-Gove, P. Webster's Third New International Dictionary (Merriam–Webster, 1993).

    Google Scholar 

  2. Ashton, P. J. et al. Self-assembling supramolecular daisy chains. Angew. Chem. Int. Ed. 37, 1913–1916 (1998).

    Article  CAS  Google Scholar 

  3. Harada, A. & Takashima, Y. in Supramolecular Polymer Chemistry (ed. Harada, A.) Ch. 2. (Wiley, 2012).

    Google Scholar 

  4. Rotzler, J. & Mayor, M. Molecular daisy chains. Chem. Soc. Rev. 42, 44–62 (2013).

    Article  CAS  Google Scholar 

  5. Ashton, P. R. et al. Supramolecular daisy chains. Angew. Chem. Int. Ed. 37, 1294–1297 (1998).

    Article  CAS  Google Scholar 

  6. Fujimoto, T., Sakata, Y. & Kaneda, T. The first Janus [2]rotaxane. Chem. Commun. 2143–2144 (2000).

  7. Rowan, S. J., Cantrill, S. J., Stoddart, J. F., White, A. J. P. & Williams, D. J. Toward daisy chain polymers: ‘Wittig exchange’ of stoppers in [2]rotaxane monomers. Org. Lett. 2, 759–762 (2000).

    Article  CAS  Google Scholar 

  8. Onagi, H., Easton, C. J. & Lincoln, S. F. An hermaphrodite [2]rotaxane: preparation and analysis of structure. Org. Lett. 3, 1041–1044 (2001).

    Article  CAS  Google Scholar 

  9. Cantrill, S. J., Youn, G. J., Stoddart, J. F. & Williams, D. J. Supramolecular daisy chains. J. Org. Chem. 66, 6857–6872 (2001).

    Article  CAS  Google Scholar 

  10. Chiu, S.-H. et al. An hermaphroditic [c2]daisy chain. Chem. Commun. 2948–2949 (2002).

  11. Guidry, E. N., Li, J., Stoddart, J. F. & Grubbs, R. H. Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers. J. Am. Chem. Soc. 129, 8944–8945 (2007).

    Article  CAS  Google Scholar 

  12. Ueng, S.-H. et al. Capturing a [c2]daisy chain using the threading-followed-by-swelling approach. Chem. Commun. 817–819 (2008).

  13. Evans, N. H. & Beer, P. D. A Janus [2]rotaxane synthesized by using an anion-templated clipping methodology. Chem. Eur. J. 17, 10542–10546 (2011).

    Article  CAS  Google Scholar 

  14. Zheng, B., Zhang, M., Dong, S., Liu, J. & Huang, F. A benzo-21-crown-7/secondary ammonium salt [c2]daisy chain. Org. Lett. 14, 306–309 (2012).

    Article  CAS  Google Scholar 

  15. Rayment, I. et al. Structure of the actin–myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  CAS  Google Scholar 

  16. Jimenez, M. C., Dietrich-Buchecker, M. C. & Sauvage, J.-P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  CAS  Google Scholar 

  17. Tsuda, S., Aso, Y. & Kaneda, T. Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. Chem. Commun. 3072–3074 (2006).

  18. Tsukagoshi, S., Miyawaki, A., Takashima, Y., Yamaguchi, H. & Harada, A. Contraction of supramolecular double-threaded dimer formed by α-cyclodextrin with a long alkyl chain. Org. Lett. 9, 1053–1055 (2007).

    Article  CAS  Google Scholar 

  19. Coutrot, F., Romuald, C. & Busseron, E. A new pH-switchable dimannosyl[c2]daisy chain molecular machine. Org. Lett. 10, 3741–3744 (2008).

    Article  CAS  Google Scholar 

  20. Wu, J. et al. An acid-base-controllable [c2]daisy chain. Angew. Chem. Int. Ed. 47, 7470–7474 (2008).

    Article  CAS  Google Scholar 

  21. Romuald, C., Busseron, E. & Coutrot, F. Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. J. Org. Chem. 75, 6516–6531 (2010).

    Article  CAS  Google Scholar 

  22. Zhang, Z., Han, C., Yu, G. & Huang, F. A solvent-driven molecular spring. Chem. Sci. 3, 3026–3031 (2012).

    Article  CAS  Google Scholar 

  23. Bruns, C. J. et al. Electrochemically and thermally switchable donor–acceptor [c2]daisy chain rotaxane. Angew. Chem. Int. Ed. 53, 1953–1958 (2014).

    Article  CAS  Google Scholar 

  24. Wolf, A. et al. pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes. Chem. Commun. 51, 4212–4215 (2015).

    Article  CAS  Google Scholar 

  25. Fang, L. et al. Acid–base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009).

    Article  CAS  Google Scholar 

  26. Clark, P. G., Day, M. W. & Grubbs, R. H. Switching and extension of a [c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009).

    Article  CAS  Google Scholar 

  27. Hmadeh, M. et al. On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer. J. Mater. Chem. 20, 3422–3430 (2010).

    Article  CAS  Google Scholar 

  28. Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    Article  CAS  Google Scholar 

  29. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    Article  CAS  Google Scholar 

  30. Gao, L., Zhang, Z., Zheng, B. & Huang, F. Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain. Polym. Chem. 5, 5734–5739 (2014).

    Article  CAS  Google Scholar 

  31. Goujon, A. et al. Hierarchical self-assembly of supramolecular muscle-like fibers. Angew. Chem. Int. Ed. 55, 703–707 (2016).

    Article  CAS  Google Scholar 

  32. Romuald, C., Arda, A., Clavel, C., Jimenez-Barbero, J. & Coutrot, F. Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chem. Sci. 3, 1851–1857 (2012).

    Article  CAS  Google Scholar 

  33. Romuald, C., Cazals, G., Enjalbal, C. & Coutrot, F. Straightforward synthesis of a double-lasso macrocycle from a nonsymmetrical [c2]daisy chain. Org. Lett. 15, 184–187 (2013).

    Article  CAS  Google Scholar 

  34. Kraus, T., Buděšínsky, M., Cvačka, J. & Sauvage, J.-P. Copper(I)-directed formation of a cyclic pseudorotaxane tetramer and its trimeric homologue. Angew. Chem. Int. Ed. 45, 258–261 (2006).

    Article  CAS  Google Scholar 

  35. Hoshino, T., Miyauchi, M., Kawaguchi, Y., Yamaguchi, H. & Harada, A. Daisy chain necklace: tri[2]rotaxane containing cyclodextrins. J. Am. Chem. Soc. 122, 9876–9877 (2000).

    Article  CAS  Google Scholar 

  36. Voignier, J. et al. Transition-metal-complexed cyclic [3]- and [4]pseudorotaxanes containing rigid ring-and-filament conjugates: synthesis and solution studies. Chem. Eur. J. 17, 5404–5414 (2011).

    Article  CAS  Google Scholar 

  37. Bruns, C. J. et al. Redox switchable daisy chain rotaxanes driven by radical–radical interactions. J. Am. Chem. Soc. 136, 4714–4723 (2014).

    Article  CAS  Google Scholar 

  38. Adams, H. et al. Knot tied around an octahedral metal centre. Nature 411, 763 (2001).

    Article  CAS  Google Scholar 

  39. Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    Article  CAS  Google Scholar 

  40. Dahlgren, M. K., Schyman, P., Tirado-Rives, J. & Jorgensen, W. L. Characterization of biaryl torsional energetics and its treatment in OPLS all-atom force fields. J. Chem. Inf. Model. 53, 1191–1199 (2013).

    Article  CAS  Google Scholar 

  41. Barich, D. H., Pugmire, R. J., Grant, D. M. & Iuliucci, R. J. Investigation of the structural conformation of biphenyl by solid state 13C NMR and quantum chemical NMR shift calculations. J. Phys. Chem. A 105, 6780–6784 (2001).

    Article  CAS  Google Scholar 

  42. Horn, M., Ihringer, J., Glink, P. T. & Stoddart, J. F. Kinetic versus thermodynamic control during the formation of [2]rotaxanes by a dynamic template-directed clipping process. Chem. Eur. J. 9, 4046–4054 (2003).

    Article  CAS  Google Scholar 

  43. Vella, S. J., Tiburcio, J. & Loeb, S. J. Optically sensed, molecular shuttles driven by acid–base chemistry. Chem. Commun. 4752–4754 (2007).

  44. Lu, T.-W., Chang, C.-F., Lai, C.-C. & Chiu, S.-H. A molecular switch based on very weak association between BPX26C6 and two recognition units. Org. Lett. 15, 5742–5745 (2013).

    Article  CAS  Google Scholar 

  45. Weilandt, T., Troff, R. W., Saxell, H., Rissanen, K. & Schalley, C. A. Metallo-supramolecular self-assembly: the case of triangle–square equilibria. Inorg. Chem 47, 7588–7598 (2008).

    Article  CAS  Google Scholar 

  46. Kawabata, E. et al. Design and synthesis of zinc-selective chelators for extracellular applications. J. Am. Chem. Soc. 127, 818–819 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology, Taiwan (MOST-104-2628-M-002-012) and the National Taiwan University (NTU-104R890913 and NTU-105R8956-2).

Author information

Authors and Affiliations

Authors

Contributions

J.-C.C. and S.-H.C. conceived and designed the experiments. J.-C.C. and S.-H.T. completed the synthesis. C.-C.L. performed the mass spectral analysis. Y.-H.L. solved the crystal structures under the supervision of S.-M.P. J.-C.C. and S.-H.C. co-wrote the manuscript and analysed the data. S.-H.C. directed the study.

Corresponding author

Correspondence to Sheng-Hsien Chiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15865 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 1975 kb)

Supplementary information

Crystallographic data for compound 3. (CIF 2017 kb)

Supplementary information

Crystallographic data for compound 8. (CIF 4016 kb)

Supplementary information

Crystallographic data for compound 9. (CIF 2397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, JC., Tseng, SH., Lai, CC. et al. Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nature Chem 9, 128–134 (2017). https://doi.org/10.1038/nchem.2608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing