Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts

Abstract

The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Control of CO2 reduction selectivity on Rh via catalyst pre-treatment.
Figure 2: Infrared analysis of selectivity switch.
Figure 3: Identifying the mechanism of A-SMSI formation.
Figure 4: Visualizing SMSI and A-SMSI states.
Figure 5: Relating SMSI and A-SMSI behaviour.
Figure 6: SMSI and A-SMSI overlayer structure and behaviour.

Similar content being viewed by others

References

  1. Christopher, P. & Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 130, 11264–11265 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Studt, F. et al. Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Holewinski, A., Idrobo, J.-C. & Linic, S. High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Nat. Chem. 6, 828–834 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2 . Science 345, 546–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal–support bonding. Science 329, 933–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Ioannides, T. & Verykios, X. E. Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal–semiconductor contact theory. J. Catal. 161, 560–569 (1996).

    Article  CAS  Google Scholar 

  10. Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, C. T. Catalyst–support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal–support interactions. Group 8 noble metals supported on TiO2 . J. Am. Chem. Soc. 100, 170–175 (1978).

    Article  CAS  Google Scholar 

  16. Tauster, S. J. Strong metal–support interactions. Acc. Chem. Res. 20, 389–394 (1987).

    Article  CAS  Google Scholar 

  17. Dulub, O., Hebenstreit, W. & Diebold, U. Imaging cluster surfaces with atomic resolution: the strong metal–support interaction state of Pt supported on TiO2(110). Phys. Rev. Lett. 84, 3646–3649 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Datye, A. K., Kalakkad, D. S., Yao, M. H. & Smith, D. J. Comparison of metal–support interactions in Pt/TiO2 and Pt/CeO2 . J. Catal. 155, 148–153 (1995).

    Article  CAS  Google Scholar 

  19. Haller, G. L. & Resasco, D. E. Metal–support interaction: group VIII metals and reducible oxides. Adv. Catal. 36, 173–235 (1989).

    CAS  Google Scholar 

  20. Sakellson, S., McMillan, M. & Haller, G. L. EXAFS evidence for direct metal–metal bonding in reduced Rh/TiO2 . J. Phys. Chem. 90, 1733–1736 (1986).

    Article  CAS  Google Scholar 

  21. Deleitenburg, C. & Trovarelli, A. Metal–support interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 catalysts as inferred from CO2 methanation activity. J. Catal. 156, 171–174 (1995).

    Article  CAS  Google Scholar 

  22. Uchijima, T. SMSI effect in some reducible oxides including niobia. Catal. Today 28, 105–117 (1996).

    Article  CAS  Google Scholar 

  23. Boffa, A., Lin, C., Bell, A. T. & Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: the influence of oxide Lewis acidity and reducibility. J. Catal. 149, 149–158 (1994).

    Article  CAS  Google Scholar 

  24. Vannice, M. A. & Sen, B. Metal-support effects on the intramolecular selectivity crotonaldehyde hydrogenation over platinum. J. Catal. 115, 65–78 (1989).

    Article  CAS  Google Scholar 

  25. Shi, X. Y. et al. Real-space observation of strong metal–support interaction: state-of-the-art and what's the next. J. Microsc. 262, 203–215 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Bernal, S. et al. Some contributions of electron microscopy to the characterisation of the strong metal–support interaction effect. Catal. Today 77, 385–406 (2003).

    Article  CAS  Google Scholar 

  27. Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    Article  CAS  Google Scholar 

  28. Porosoff, M. D. & Chen, J. G. Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. J. Catal. 301, 30–37 (2013).

    Article  CAS  Google Scholar 

  29. Panagiotopoulou, P., Kondarides, D. I. & Verykios, X. E. Selective methanation of CO over supported noble metal catalysts: effects of the nature of the metallic phase on catalytic performance. Appl. Catal. A. 344, 45–54 (2008).

    Article  CAS  Google Scholar 

  30. Avanesian, T., Gusmão, G. S. & Christopher, P. Mechanism of CO2 reduction by H2 on Ru(0001) and general selectivity descriptors for late-transition metal catalysts. J. Catal. http://dx.doi.org/10.1016/j.jcat.2016.03.016 (in the press).

  31. Solymosi, F., Bánsági, T. & Novák, É. Effect of NO on the CO-induced disruption of rhodium crystallites. J. Catal. 112, 183–193 (1988).

    Article  CAS  Google Scholar 

  32. Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Karelovic, A. & Ruiz, P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal. 301, 141–153 (2013).

    Article  CAS  Google Scholar 

  34. Henderson, M. A. & Worely, S. D. An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. J. Phys. Chem. 89, 1417–1423 (1985).

    Article  CAS  Google Scholar 

  35. Lundwall, M. J., McClure, S. M. & Goodman, D. W. Probing terrace and step sites on Pt nanoparticles using CO and ethylene. J. Phys. Chem. C 114, 7904–7912 (2010).

    Article  CAS  Google Scholar 

  36. Brabec, L. & Nováková, J. Ship-in-bottle synthesis of anionic Rh carbonyls in faujasites. J. Mol. Catal. A. 166, 283–292 (2001).

    Article  CAS  Google Scholar 

  37. Deshlahra, P., Conway, J., Wolf, E. E. & Schneider, W. F. Influence of dipole−dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111). Langmuir 28, 8408–8417 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Bando, K. K., Sayama, K., Kusama, H., Okabe, K. & Arakawa, H. In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2 . Appl. Catal. A 165, 391–409 (1997).

    Article  CAS  Google Scholar 

  39. Haller, G. L. et al. Geometric and electronic effects of SMSI in group VIII–TiO2 systems. In Proc. 8th International Congress on Catalysis Vol. 5 (ed. Ertl, G.) 135–144 (1984).

  40. Henderson, M. A. Complexity in the decomposition of formic acid on the TiO2(110) surface. J. Phys. Chem. B 101, 221–229 (1997).

    Article  CAS  Google Scholar 

  41. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  42. Morikawa, Y. et al. First-principles theoretical study and scanning tunneling microscopic observation of dehydration process of formic acid on a TiO2(110) surface. J. Phys. Chem. B 108, 14446–14451 (2004).

    Article  CAS  Google Scholar 

  43. Zhang, S. et al. Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy. Nat. Commun. 6, 7778 (2015).

    Article  PubMed  Google Scholar 

  44. Zhang, S. et al. Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. J. Catal. 337, 240–247 (2016).

    Article  CAS  Google Scholar 

  45. Bowker, M. et al. Model catalyst studies of the strong metal–support interaction: surface structure identified by STM on Pd nanoparticles on TiO2(110). J. Catal. 234, 172–181 (2005).

    Article  CAS  Google Scholar 

  46. Liu, J. J. Advanced electron microscopy of metal–support interactions in supported metal catalysts. ChemCatChem 3, 934–948 (2011).

    Article  CAS  Google Scholar 

  47. Logan, A. D., Braunschweig, E. J., Datye, A. K. & Smith, D. J. Direct observation of the surfaces of small metal crystallites: rhodium supported on TiO2 . Langmuir 4, 827–830 (1988).

    Article  CAS  Google Scholar 

  48. Zhang, S. et al. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 337, 4528–4534 (2016).

    Article  CAS  Google Scholar 

  49. Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Crystallogr. 41, 822–824 (2008).

    Article  CAS  Google Scholar 

  50. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. & Eller, M. J. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    Article  CAS  Google Scholar 

  52. Benfield, R. E. Mean coordination numbers and the non-metal-metal transition in clusters. J. Chem. Soc. Faraday Trans. 88, 1107–1110 (1992).

    Article  CAS  Google Scholar 

  53. Sasaki, K. & Marinkovic, N. in X-Ray and Neutron Techniques for Nanomaterial Characterization (ed. Kumar, C. S. S. R.) Ch. 6 (Springer, 2016).

    Google Scholar 

Download references

Acknowledgements

P.C. acknowledges funding from the University of California, Riverside, and the National Science Foundation (NSF), Grant No. CHE-1301019. G.W.G. and X.P. acknowledge the NSF, Grants No. CBET-1159240 and No. DMR-0723032. XAS measurements were performed on Beamline 2-2, which was supported in part by the Synchrotron Catalysis Consortium, US Department of Energy Grant No. DE-SC0012335. A. V. Dudchenko is acknowledged for his efforts in Arduino automation of the packed-bed reactor experimental apparatus.

Author information

Authors and Affiliations

Authors

Contributions

J.C.M. and P.C. developed the project, analysed the data and wrote the paper. J.C.M. performed all the catalyst synthesis, catalyst testing and DRIFTS analysis. L.D. assisted with FTIR data collection. S.Z. performed STEM experiments. G.W.G. and X.P. assisted with STEM data analysis. N.M. and J.G.C. performed and analysed the XAS experiments. P.C. oversaw the project.

Corresponding author

Correspondence to Phillip Christopher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubu, J., Zhang, S., DeRita, L. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nature Chem 9, 120–127 (2017). https://doi.org/10.1038/nchem.2607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing