Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A decarboxylative approach for regioselective hydroarylation of alkynes

Abstract

Regioselective activation of aromatic C–H bonds is a long-standing challenge for arene functionalization reactions such as the hydroarylation of alkynes. One possible solution is to employ a removable directing group that activates one of several aromatic C–H bonds. Here we report a new catalytic method for regioselective alkyne hydroarylation with benzoic acid derivatives during which the carboxylate functionality directs the alkyne to the ortho-C–H bond with elimination in situ to form a vinylarene product. The decarboxylation stage of this tandem sequence is envisioned to proceed with the assistance of an ortho-alkenyl moiety, which is formed by the initial alkyne coupling. This ruthenium-catalysed decarboxylative alkyne hydroarylation eliminates the common need for pre-existing ortho-substitution on benzoic acids for substrate activation, proceeds under redox-neutral and relatively mild conditions, and tolerates a broad range of synthetically useful aromatic functionality. Thus, it significantly increases the synthetic utility of benzoic acids as easily accessible aromatic building blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for catalytic alkyne hydroarylation and the resulting regiochemistry.
Figure 2: Model reaction for the catalyst development of decarboxylative alkyne hydroarylation.
Figure 3: Proposed divergent reactivity of a cyclometallated alkenylruthenium(II) carboxylate intermediate.
Figure 4: Mechanism-guided efforts towards catalyst improvement.

Similar content being viewed by others

References

  1. Jia, C. et al. Efficient activation of aromatic C–H bonds for addition to C–C multiple bonds. Science 287, 1992–1995 (2000).

    Article  CAS  Google Scholar 

  2. Nevado, C. & Echavarren, A. M. Transition metal-catalyzed hydroarylation of alkynes. Synthesis, 167–182 (2005).

  3. Mitchell, D. & Yu, H. Synthetic applications of palladium-catalyzed hydroarylation and related systems. Curr. Opin. Drug Discov. Dev. 6, 876–883 (2003).

    CAS  Google Scholar 

  4. Kitamura, T. Transition-metal-catalyzed hydroarylation reactions of alkynes through direct functionalization of C–H bonds. A convenient tool for organic synthesis. Eur. J. Org. Chem. 1111–1125 (2009).

  5. Bandini, M. Gold-catalyzed decorations of arenes and heteroarenes with C–C multiple bonds. Chem. Soc. Rev. 40, 1358–1367 (2011).

    Article  CAS  Google Scholar 

  6. Cacchi, S. The palladium-catalyzed hydroarylation and hydrovinylation of carbon–carbon multiple bonds: new perspectives in organic synthesis. Pure Appl. Chem. 62, 713–722 (1990).

    Article  CAS  Google Scholar 

  7. Cacchi, S., Fabrizi, G., Goggiamani, A. & Persiani, D. Palladium-catalyzed hydroarylation of alkynes with arenediazonium salts. Org. Lett. 10, 1597–1600 (2008).

    Article  CAS  Google Scholar 

  8. Xu, X. et al. Palladium-catalyzed hydroarylation of alkynes with arylboronic acids. Tetrahedron 66, 2433–2438 (2010).

    Article  CAS  Google Scholar 

  9. Song, C. E., Jun, D.-U., Choung, S.-Y., Roh, E. J. & Lee, S.-G. Dramatic enhancement of catalytic activity in an ionic liquid: highly practical Friedel–Crafts alkenylation of arenes with alkynes catalyzed by metal triflates. Angew. Chem. Int. Ed. 43, 6183–6185 (2004).

    Article  CAS  Google Scholar 

  10. Li, R., Wang, S. R. & Lu, W. FeCl3-catalyzed alkenylation of simple arenes with aryl-substituted alkynes. Org. Lett. 9, 2219–2222 (2007).

    Article  CAS  Google Scholar 

  11. Reetz, M. T. & Sommer, K. Gold-catalyzed hydroarylation of alkynes. Eur. J. Org. Chem. 3485–3496 (2003).

  12. Shi, Z. & He, C. Efficient functionalization of aromatic C–H bonds catalyzed by gold(III) under mild and solvent-free conditions. J. Org. Chem. 69, 3669–3671 (2004).

    Article  CAS  Google Scholar 

  13. Albrecht, M. Cyclometalation using d-block transition metals: fundamental aspects and recent trends. Chem. Rev. 110, 576–623 (2010).

    Article  CAS  Google Scholar 

  14. Lewis, L. N. & Smith, J. F. Catalytic C–C bond formation via ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986).

    Article  CAS  Google Scholar 

  15. Murai, S. et al. Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature 366, 529–531 (1993).

    Article  CAS  Google Scholar 

  16. Kakiuchi, F., Yamamoto, Y., Chatani, N. & Murai, S. Catalytic addition of aromatic C–H bonds to acetylenes. Chem. Lett. 681–682 (1995).

  17. Schipper, D. J., Hutchinson, M. & Fagnou, K. Rhodium(III)-catalyzed intermolecular hydroarylation of alkynes. J. Am. Chem. Soc. 132, 6910–6911 (2010).

    Article  CAS  Google Scholar 

  18. Hashimoto, Y., Hirano, K., Satoh, T., Kakiuchi, F. & Miura, M. Ruthenium(II)-catalyzed regio- and stereoselective hydroarylation of alkynes via directed C–H functionalization. Org. Lett. 14, 2058–2061 (2012).

    Article  CAS  Google Scholar 

  19. Hashimoto, Y., Hirano, K., Satoh, T., Kakiuchi, F. & Miura, M. Regioselective C–H bond cleavage/alkyne insertion under ruthenium catalysis. J. Org. Chem. 78, 638–646 (2013).

    Article  CAS  Google Scholar 

  20. Min, M., Kim, D. & Hong, S. AgSbF6-controlled diastereodivergence in alkyne hydroarylation: facile access to Z- and E-alkenyl arenes. Chem. Commun. 50, 8028–8031 (2014).

    Article  CAS  Google Scholar 

  21. Zhang, F. & Spring, D. R. Arene C–H functionalisation using a removable/modifiable or a traceless directing group strategy. Chem. Soc. Rev. 43, 6906–6919 (2014).

    Article  CAS  Google Scholar 

  22. Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).

    Article  CAS  Google Scholar 

  23. Liu, G., Shen, Y., Zhou, Z. & Lu, X. Rhodium(III)-catalyzed redox-neutral coupling of N-phenoxyacetamides and alkynes with tunable selectivity. Angew. Chem. Int. Ed. 52, 6033–6037 (2013).

    Article  CAS  Google Scholar 

  24. Wang, C., Chen, H., Wang, Z., Chen, J. & Huang, Y. Rhodium(III)-catalyzed C–H activation of arenes using a versatile and removable triazene directing group. Angew. Chem. Int. Ed. 51, 7242–7245 (2012).

    Article  CAS  Google Scholar 

  25. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).

    Article  CAS  Google Scholar 

  26. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  Google Scholar 

  27. Shepard, A. F., Winslow, N. R. & Johnson, J. R. The simple halogen derivative of furan. J. Am. Chem. Soc. 52, 2083–2090 (1930).

    Article  CAS  Google Scholar 

  28. Gooβen, L. J., Rodriguez, N. & Gooβen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem. Int. Ed. 47, 3100–3120 (2008).

    Article  Google Scholar 

  29. Rodriguez, N. & Gooβen, L. J. Decarboxylative coupling reactions: a modern strategy for C–C-bond formation. Chem. Soc. Rev. 40, 5030–5048 (2011).

    Article  CAS  Google Scholar 

  30. Cornella, J. & Larrosa, I. Decarboxylative carbon–carbon bond-forming transformations of (hetero)aromatic carboxylic acids. Synthesis 44, 653–676 (2012).

    Article  CAS  Google Scholar 

  31. Tang, J., Biafora, A. & Goossen, L. J. Catalytic decarboxylative cross-coupling of aryl chlorides and benzoates without activating ortho substituents. Angew. Chem. Int. Ed. 44, 13130–13133 (2015).

    Article  Google Scholar 

  32. Myers, A. G., Tanaka, D. & Mannion, M. R. Development of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates. J. Am. Chem. Soc. 124, 11250–11251 (2002).

    Article  CAS  Google Scholar 

  33. Gooβen, L. J., Deng, G. & Levy, L. M. Decarboxylation: synthesis of biaryls via catalytic decarboxylative coupling. Science 313, 662–664 (2006).

    Article  Google Scholar 

  34. Gooβen, L. J., Thiel, W. R., Rodriguez, N., Linder, C. & Melzer, B. Copper-catalyzed protodecarboxylation of aromatic carboxylic acids. Adv. Synth. Catal. 349, 2241–2246 (2007).

    Article  Google Scholar 

  35. Ueura, K., Satoh, T. & Miura, M. Rhodium- and iridium-catalyzed oxidative coupling of benzoic acids with alkynes via regioselective C–H bond cleavage. J. Org. Chem. 72, 5362–5367 (2007).

    Article  CAS  Google Scholar 

  36. Maehara, A., Tsurugi, H., Satoh, T. & Miura, M. Regioselective C–H functionalization directed by a removable carboxyl group: palladium-catalyzed vinylation at the unusual position of indole and related heteroaromatic rings. Org. Lett. 10, 1159–1162 (2008).

    Article  CAS  Google Scholar 

  37. Mochida, S., Hirano, K., Satoh, T. & Miura, M. Synthesis of stilbene and distyrylbenzene derivatives through rhodium-catalyzed ortho-olefination and decarboxylation of benzoic acids. Org. Lett. 12, 5776–5779 (2010).

    Article  CAS  Google Scholar 

  38. Wang, C., Rakshit, S. & Glorius, F. Palladium-catalyzed intermolecular decarboxylative coupling of 2-phenylbenzoic acids with alkynes via C–H and C–C bond activation. J. Am. Chem. Soc. 132, 14006–14008 (2010).

    Article  CAS  Google Scholar 

  39. Cornella, J., Righi, M. & Larrosa, I. Carboxylic acids as traceless directing groups for formal meta-selective direct arylation. Angew. Chem. Int. Ed. 50, 9429–9432 (2011).

    Article  CAS  Google Scholar 

  40. Bhadra, S., Dzik, W. I. & Gooβen, L. J. Synthesis of aryl ethers from benzoates through carboxylate-directed C–H-activating alkoxylation with concomitant protodecarboxylation. Angew. Chem. Int. Ed. 52, 2959–2962 (2013).

    Article  CAS  Google Scholar 

  41. Mamone, P., Danoun, G. & Gooβen, L. J. Rhodium-catalyzed ortho acylation of aromatic carboxylic acids. Angew. Chem. Int. Ed. 52, 6704–6708 (2013).

    Article  CAS  Google Scholar 

  42. Luo, J., Preciado, S. & Larrosa, I. Overriding orthopara selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014).

    Article  CAS  Google Scholar 

  43. Quan, Y. & Xie, Z. Iridium catalyzed regioselective cage boron alkenylation of o-carboranes via direct cage B−H activation. J. Am. Chem. Soc. 136, 15513–15516 (2014).

    Article  CAS  Google Scholar 

  44. Qin, X., Sun, D., You, Q., Cheng, Y. & You, J. Rh(III)-catalyzed decarboxylative ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid as a traceless directing group. Org. Lett. 17, 1762–1765 (2015).

    Article  CAS  Google Scholar 

  45. Zhang, Y., Zhao, H., Zhang, M. & Su, W. Carboxylic acids as traceless directing groups for the rhodium(III)-catalyzed decarboxylative C–H arylation of thiophenes. Angew. Chem. Int. Ed. 54, 3817–3821 (2015).

    Article  CAS  Google Scholar 

  46. Shi, X.-Y. et al. A convenient synthesis of N-aryl benzamides by rhodium-catalyzed ortho-amidation and decarboxylation of benzoic acids. Chem. Eur. J. 21, 1900–1903 (2015).

    Article  CAS  Google Scholar 

  47. Shi, X.-Y. et al. Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. Sci. China Chem. 58, 1286–1291 (2015).

    Article  CAS  Google Scholar 

  48. Ackermann, L., Pospech, J., Graczyk, K. & Rauch, K. Versatile synthesis of isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C–H/O–H bond cleavages. Org. Lett. 14, 930–933 (2012).

    Article  CAS  Google Scholar 

  49. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C−H bond activation and functionalization. Chem. Rev. 112, 5879–5919 (2012).

    Article  CAS  Google Scholar 

  50. Cacchi, S., Felici, M. & Pietroni, B. The palladium-catalyzed reaction of aryl iodides with mono- and disubstituted acetylenes: a new synthesis of trisubstituted alkenes. Tetrahedron Lett. 25, 3137–3140 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (CHE-1301409 and RII-1330840 in association with the North Dakota Experimental Program to Stimulate Competitive Research (ND EPSCoR) to P.Z. and J.Z.) and ND EPSCoR (EPS-0447679, fellowship to J.Z.) for their financial support. The work of J.F.H. and R.S. was supported by the Director, Office of Science, US Department of Energy, under Contract no. DE-AC02-05CH11231. We also thank A. Ugrinov for assistance with the X-ray diffraction data collection and analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. performed the experiments and data analysis. R.S. participated in the high-throughput screening experiments for catalyst development. J.Z., J.F.H. and P.Z. designed the catalytic sequence and developed the reaction conditions. P.Z. and J.F.H. prepared this manuscript with feedback from J.Z. and R.S.

Corresponding author

Correspondence to Pinjing Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8009 kb)

Supplementary information

Crystallographic data for compound 9. (CIF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Shrestha, R., Hartwig, J. et al. A decarboxylative approach for regioselective hydroarylation of alkynes. Nature Chem 8, 1144–1151 (2016). https://doi.org/10.1038/nchem.2602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing