Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling

Abstract

Surface-assisted covalent linking of precursor molecules enables the fabrication of low-dimensional nanostructures, which include graphene nanoribbons. One approach to building functional multicomponent systems involves the lateral anchoring of organic heteromolecules to graphene. Here we demonstrate the dehydrogenative coupling of single porphines to graphene edges on the same metal substrate as used for graphene synthesis. The covalent linkages are visualized by scanning probe techniques with submolecular resolution, which directly reveals bonding motifs and electronic features. Distinct configurations are identified that can be steered towards entities predominantly fused to graphene edges through two pyrrole rings by thermal annealing. Furthermore, we succeeded in the concomitant metallation of the macrocycle with substrate atoms and the axial ligation of adducts. Such processes combined with graphene–nanostructure synthesis has the potential to create complex materials systems with tunable functionalities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: STM images and corresponding models that show the experimental procedure.
Figure 2: STM and AFM data of distinct covalent-coupling configurations at the graphene edge.
Figure 3: Metallation and ligation of graphene-anchored tetrapyrrole macrocycles.
Figure 4: Low-energy electronic structure of the porphine/graphene interface.

References

  1. Méndez, J., López, M. F. & Martín-Gago, J. A. On-surface synthesis of cyclic organic molecules. Chem. Soc. Rev. 40, 4578–4590 (2011).

    PubMed  Google Scholar 

  2. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  3. Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotech. 10, 156–160 (2015).

    CAS  Google Scholar 

  4. Dyke, C. A. & Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004).

    CAS  Google Scholar 

  5. Haq, S. et al. Versatile bottom-up construction of diverse macromolecules on a surface observed by scanning tunneling microscopy. ACS Nano 8, 8856–8870 (2014).

    CAS  PubMed  Google Scholar 

  6. Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 70, 259–379 (2015).

    CAS  Google Scholar 

  7. Auwärter, W., Écija, D., Klappenberger, F. & Barth, J. V. Porphyrins at interfaces. Nat. Chem. 7, 105–120 (2015).

    PubMed  Google Scholar 

  8. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotech. 7, 41–46 (2011).

    Google Scholar 

  9. Seufert, K. et al. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nat. Chem. 3, 114–119 (2011).

    CAS  PubMed  Google Scholar 

  10. Drain, C. M., Varotto, A. & Radivojevic, I. Self-organized porphyrinic materials. Chem. Rev. 109, 1630–1658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Urbani, M., Gratzel, M., Nazeeruddin, M. K. & Torres, T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 114, 12330–12396 (2014).

    CAS  PubMed  Google Scholar 

  12. Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014).

    CAS  PubMed  Google Scholar 

  13. Neto, A. C., Guinea, F., Peres, N., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Google Scholar 

  14. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012).

    CAS  PubMed  Google Scholar 

  15. Malig, J., Jux, N. & Guldi, D. M. Toward multifunctional wet chemically functionalized graphene—integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc. Chem. Res. 46, 53–64 (2012).

    PubMed  Google Scholar 

  16. Dai, L. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31–42 (2012).

    PubMed  Google Scholar 

  17. Criado, A., Melchionna, M., Marchesan, S. & Prato, M. The covalent functionalization of graphene on substrates. Angew. Chem. Int. Ed. 54, 10734–10750 (2015).

    CAS  Google Scholar 

  18. Kuila, T. et al. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012).

    CAS  Google Scholar 

  19. Xu, Y. et al. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).

    CAS  Google Scholar 

  20. Roy-Mayhew, J. D. & Aksay, I. A. Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114, 6323–6348 (2014).

    CAS  PubMed  Google Scholar 

  21. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574–578 (2010).

    CAS  Google Scholar 

  22. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  23. Otero, G. et al. Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature 454, 865–868 (2008).

    CAS  PubMed  Google Scholar 

  24. Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotech. 9, 896–900 (2014).

    CAS  Google Scholar 

  25. Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    CAS  PubMed  Google Scholar 

  26. Treier, M. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3, 61–67 (2011).

    CAS  PubMed  Google Scholar 

  27. Fan, Q., Gottfried, J. M. & Zhu, J. Surface-catalyzed C–C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48, 2484–2494 (2015).

    CAS  PubMed  Google Scholar 

  28. Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nacci, C. et al. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015).

    PubMed  Google Scholar 

  30. Klappenberger, F. et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 48, 2140–2150 (2015).

    CAS  PubMed  Google Scholar 

  31. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotech. 11, 218–230 (2015).

    Google Scholar 

  32. Wiengarten, A. et al. Surface-assisted dehydrogenative homocoupling of porphine molecules. J. Am. Chem. Soc. 136, 9346–9354 (2014).

    CAS  PubMed  Google Scholar 

  33. Kiraly, B. et al. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat. Commun. 4, 2804 (2013).

    Google Scholar 

  34. Xu, B. et al. Electronic and magnetic properties of zigzag graphene nanoribbon with one edge saturated. Appl. Phys. Lett. 96, 163102 (2010).

    Google Scholar 

  35. Batzill, M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115 (2012).

    CAS  Google Scholar 

  36. Bischoff, F. et al. How surface bonding and repulsive interactions cause phase transformations: ordering of a prototype macrocyclic compound on Ag(111). ACS Nano 7, 3139–3149 (2013).

    CAS  PubMed  Google Scholar 

  37. Leicht, P. et al. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold. ACS Nano 8, 3735–3742 (2014).

    CAS  PubMed  Google Scholar 

  38. Merino, P. et al. Sublattice localized electronic states in atomically resolved graphene–Pt(111) edge-boundaries. ACS Nano 8, 3590–3596 (2014).

    CAS  PubMed  Google Scholar 

  39. Garcia-Lekue, A. et al. Substrate-induced stabilization and reconstruction of zigzag edges in graphene nanoislands on Ni(111). J. Phys. Chem. C 119, 4072–4078 (2015).

    CAS  Google Scholar 

  40. de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    CAS  PubMed  Google Scholar 

  41. Dienel, T. et al. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15, 5185–5190 (2015).

    CAS  PubMed  Google Scholar 

  42. Schuler, B. et al. From perylene to a 22-ring aromatic hydrocarbon in one-pot. Angew. Chem. Int. Ed. 53, 9004–9006 (2014).

    CAS  Google Scholar 

  43. Albrecht, F., Pavliček, N., Herranz-Lancho, C., Ruben, M. & Repp, J. Characterization of a surface reaction by means of atomic force microscopy. J. Am. Chem. Soc. 137, 7424–7428 (2015).

    CAS  PubMed  Google Scholar 

  44. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    CAS  PubMed  Google Scholar 

  45. Mohn, F., Gross, L., Moll, N. & Meyer, G. Imaging the charge distribution within a single molecule. Nat. Nanotech. 7, 227–231 (2012).

    CAS  Google Scholar 

  46. Neu, M. et al. Image correction for atomic force microscopy images with functionalized tips. Phys. Rev. B 89, 205407 (2014).

    Google Scholar 

  47. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Google Scholar 

  48. Chuvilin, A., Meyer, J. C., Algara-Siller, G. & Kaiser, U. From graphene constrictions to single carbon chains. New J. Phys. 11, 083019 (2009).

    Google Scholar 

  49. Jin, C., Lan, H., Peng, L., Suenaga, K. & Iijima, S. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    PubMed  Google Scholar 

  50. Chen, B. M. & Tulinsky, A. Redetermination of the structure of porphine. J. Am. Chem. Soc. 94, 4144–4151 (1972).

    CAS  PubMed  Google Scholar 

  51. Marbach, H. Surface-mediated in situ metalation of porphyrins at the solid–vacuum interface. Acc. Chem. Res. 48, 2649–2658 (2015).

    CAS  PubMed  Google Scholar 

  52. Diller, K. et al. In-vacuo interfacial tetrapyrrole metallation. Chem. Soc. Rev. 45, 1629–1656 (2016).

    CAS  PubMed  Google Scholar 

  53. Wäckerlin, C. et al. Controlling spins in adsorbed molecules by a chemical switch. Nat. Commun. 1, 61 (2010).

    PubMed  Google Scholar 

  54. Wäckerlin, C. et al. On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands. Chem. Sci. 3, 3154–3160 (2012).

    Google Scholar 

  55. den Boer, D. et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat. Chem. 5, 621–627 (2013).

    CAS  PubMed  Google Scholar 

  56. Smykalla, L., Shukrynau, P., Zahn, D. R. & Hietschold, M. Self-metalation of phthalocyanine molecules with silver surface atoms by adsorption on Ag(110). J. Phys. Chem. C 119, 17228–17234 (2015).

    CAS  Google Scholar 

  57. Seufert, K., Auwärter, W. & Barth, J. V. Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide. J. Am. Chem. Soc. 132, 18141–18146 (2010).

    CAS  PubMed  Google Scholar 

  58. Ijäs, M. et al. Electronic states in finite graphene nanoribbons: effect of charging and defects. Phys. Rev. B 88, 075429 (2013).

    Google Scholar 

  59. van der Lit, J. et al. Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 4, 2023 (2013).

    PubMed  Google Scholar 

  60. Tripkovic, V. et al. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013).

    CAS  Google Scholar 

  61. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Riss for fruitful discussions. We are grateful for support from the European Research Council (ERC) Advanced Grant MolArt (no. 247299), the Munich Centre for Advanced Photonics and the TUM Institute for Advanced Study funded by the German Research Foundation (DFG) via the German Excellence Initiative as well as the European Union Seventh Framework Programme under grant agreement no. 291763. W.A. acknowledges funding from the DFG via a Heisenberg professorship and from the ERC Consolidator Grant NanoSurfs (no. 615233). M.B. acknowledges support from the National Science Foundation under award DMR-1204924. M.G. acknowledges financial support from the Marie Curie Intra-European Fellowship (Project 2D Nano, no. 658070).

Author information

Authors and Affiliations

Authors

Contributions

W.A. and J.V.B. conceived and designed the experiments. Y.H., F.B., J.D. and M.G. performed the experiments. Y.H., F.B., J.D. and M.G. analysed the data. M.-L.B. performed the calculations. M.G., W.A., Y.H., M.B. and J.V.B. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Willi Auwärter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 896 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Garnica, M., Bischoff, F. et al. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nature Chem 9, 33–38 (2017). https://doi.org/10.1038/nchem.2600

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing